Quantitative Methods In Finance Using R

Download Quantitative Methods In Finance Using R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quantitative Methods In Finance Using R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quantitative Methods in Finance using R

Author: John Fry
language: en
Publisher: McGraw-Hill Education (UK)
Release Date: 2022-07-04
“The book will form a solid foundation to support the transition of students into the world of work or further research.” Professor Jane M Binner, Chair of Finance, Department of Finance, University of Birmingham, UK “In over 20 years of teaching quantitative methods, I have rarely come across a book such as this which meets/exceeds all the expectations of its intended audience so well” Tuan Yu, Lecturer, Kent Business School, Canterbury, UK “This is a fantastic book for anyone wanting to understand, learn and apply quantitative methods in finance using R” Professor Raphael Markellos, Professor of Finance, Norwich Business School, UK Quantitative Methods in Finance Using R draws on the extensive teaching and research expertise of John Fry and Matt Burke, covering a wide range of quantitative methods in Finance that utilise the freely downloadable R software. With software playing an increasingly important role in finance, this book is a must-have introduction for finance students who want to explore how they can undertake their own quantitative analyses in dissertation and project work. Assuming no prior knowledge, and taking a holistic approach, this brand new title guides you from first principles and help to build your confidence in tackling large data sets in R. Complete with examples and exercises with worked solutions, Fry and Burke demonstrate how to use the R freeware for regression and linear modelling, with attention given to presentation and the importance of good writing and presentation skills in project work and data analysis more generally. Through this book, you will develop your understanding of: •Descriptive statistics •Inferential statistics •Regression •Analysis of variance •Probability regression models •Mixed models •Financial and non-financial time series John Fry is a senior lecturer in Applied Mathematics at the University of Hull. Fry has a PhD in Mathematical Finance from the University of Sheffield. His main research interests span mathematical finance, econophysics, statistics and operations research. Matt Burke is a senior lecturer in Finance at Sheffield Hallam University. He holds a PhD in Finance from the University of East Anglia. Burke’s main research interests lie in asset pricing and climate finance.
Quantitative Methods in Finance

Author: Ştefan Cristian Gherghina
language: en
Publisher: Springer Nature
Release Date: 2023-11-21
This book explores certain social and environmental drivers of sustainable economic growth for European Union countries (EU-27) and United Kingdom (UK) in the context of the UN 2030 Agenda for Sustainable Development. The author provides a comprehensive overview of the factors that impact and facilitate sustainable economic growth and discusses the complex set of factors involved in sustainable economic development. Special attention is given to quantitative frameworks and empirical modelling, with the main focus on panel data regression models and vector error correction model approach. Furthermore, the book develops ratings of sustainable economic growth for each of the explored countries, by employing data mining techniques such as principal component analysis. Also, the data envelopment analysis non-parametric methodology towards assessing sustainable economic growth is investigated, as well as the cluster analysis in order to classify the selected nations according to sustainable economic growth. The book appeals to policy-makers and academics targeting to learn more about the characteristics of sustainable economic growth.
Market Risk Analysis, Quantitative Methods in Finance

Written by leading market risk academic, Professor Carol Alexander, Quantitative Methods in Finance forms part one of the Market Risk Analysis four volume set. Starting from the basics, this book helps readers to take the first step towards becoming a properly qualified financial risk manager and asset manager, roles that are currently in huge demand. Accessible to intelligent readers with a moderate understanding of mathematics at high school level or to anyone with a university degree in mathematics, physics or engineering, no prior knowledge of finance is necessary. Instead the emphasis is on understanding ideas rather than on mathematical rigour, meaning that this book offers a fast-track introduction to financial analysis for readers with some quantitative background, highlighting those areas of mathematics that are particularly relevant to solving problems in financial risk management and asset management. Unique to this book is a focus on both continuous and discrete time finance so that Quantitative Methods in Finance is not only about the application of mathematics to finance; it also explains, in very pedagogical terms, how the continuous time and discrete time finance disciplines meet, providing a comprehensive, highly accessible guide which will provide readers with the tools to start applying their knowledge immediately. All together, the Market Risk Analysis four volume set illustrates virtually every concept or formula with a practical, numerical example or a longer, empirical case study. Across all four volumes there are approximately 300 numerical and empirical examples, 400 graphs and figures and 30 case studies many of which are contained in interactive Excel spreadsheets available from the accompanying CD-ROM . Empirical examples and case studies specific to this volume include: Principal component analysis of European equity indices; Calibration of Student t distribution by maximum likelihood; Orthogonal regression and estimation of equity factor models; Simulations of geometric Brownian motion, and of correlated Student t variables; Pricing European and American options with binomial trees, and European options with the Black-Scholes-Merton formula; Cubic spline fitting of yields curves and implied volatilities; Solution of Markowitz problem with no short sales and other constraints; Calculation of risk adjusted performance metrics including generalised Sharpe ratio, omega and kappa indices.