Quality Controlled Lossy Image Compression

Download Quality Controlled Lossy Image Compression PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quality Controlled Lossy Image Compression book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
A Guide for Machine Vision in Quality Control

Machine Vision systems combine image processing with industrial automation. One of the primary areas of application of Machine Vision in the Industry is in the area of Quality Control. Machine vision provides fast, economic and reliable inspection that improves quality as well as business productivity. Building machine vision applications is a challenging task as each application is unique, with its own requirements and desired outcome. A Guide to Machine Vision in Quality Control follows a practitioner’s approach to learning machine vision. The book provides guidance on how to build machine vision systems for quality inspections. Practical applications from the Industry have been discussed to provide a good understanding of usage of machine vision for quality control. Real-world case studies have been used to explain the process of building machine vision solutions. The book offers comprehensive coverage of the essential topics, that includes: Introduction to Machine Vision Fundamentals of Digital Images Discussion of various machine vision system components Digital image processing related to quality control Overview of automation The book can be used by students and academics, as well as by industry professionals, to understand the fundamentals of machine vision. Updates to the on-going technological innovations have been provided with a discussion on emerging trends in machine vision and smart factories of the future. Sheila Anand is a PhD graduate and Professor at Rajalakshmi Engineering College, Chennai, India. She has over three decades of experience in teaching, consultancy and research. She has worked in the software industry and has extensive experience in development of software applications and in systems audit of financial, manufacturing and trading organizations. She guides Ph.D. aspirants and many of her research scholars have since been awarded their doctoral degree. She has published many papers in national and international journals and is a reviewer for several journals of repute. L Priya is a PhD graduate working as Associate Professor and Head, Department of Information Technology at Rajalakshmi Engineering College, Chennai, India. She has nearly two decades of teaching experience and good exposure to consultancy and research. She has delivered many invited talks, presented papers and won several paper awards in International Conferences. She has published several papers in International journals and is a reviewer for SCI indexed journals. Her areas of interest include Machine Vision, Wireless Communication and Machine Learning.
Computational Inference and Control of Quality in Multimedia Services

This thesis focuses on the problem of optimizing the quality of network multimedia services. This problem spans multiple domains, from subjective perception of multimedia quality to computer networks management. The work done in this thesis approaches the problem at different levels, developing methods for modeling the subjective perception of quality based on objectively measurable parameters of the multimedia coding process as well as the transport over computer networks. The modeling of subjective perception is motivated by work done in psychophysics, while using Machine Learning techniques to map network conditions to the human perception of video services. Furthermore, the work develops models for efficient control of multimedia systems operating in dynamic networked environments with the goal of delivering optimized Quality of Experience. Overall this thesis delivers a set of methods for monitoring and optimizing the quality of multimedia services that adapt to the dynamic environment of computer networks in which they operate.