Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations


Download Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Qualitative Analysis Of Nonlinear Elliptic Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations


Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations

Author: Vicenţiu Rǎdulescu

language: en

Publisher: Hindawi Publishing Corporation

Release Date: 2008


DOWNLOAD





This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.

Linear and Semilinear Partial Differential Equations


Linear and Semilinear Partial Differential Equations

Author: Radu Precup

language: en

Publisher: Walter de Gruyter

Release Date: 2012-12-06


DOWNLOAD





The text is intended for students who wish a concise and rapid introduction to some main topics in PDEs, necessary for understanding current research, especially in nonlinear PDEs. Organized on three parts, the book guides the reader from fundamental classical results, to some aspects of the modern theory and furthermore, to some techniques of nonlinear analysis. Compared to other introductory books in PDEs, this work clearly explains the transition from classical to generalized solutions and the natural way in which Sobolev spaces appear as completions of spaces of continuously differentiable functions with respect to energetic norms. Also, special attention is paid to the investigation of the solution operators associated to elliptic, parabolic and hyperbolic non-homogeneous equations anticipating the operator approach of nonlinear boundary value problems. Thus the reader is made to understand the role of linear theory for the analysis of nonlinear problems.

Analysis, Modelling, Optimization, and Numerical Techniques


Analysis, Modelling, Optimization, and Numerical Techniques

Author: Gerard Olivar Tost

language: en

Publisher: Springer

Release Date: 2015-03-18


DOWNLOAD





This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.