Qualitative Analysis And Control Of Complex Neural Networks With Delays


Download Qualitative Analysis And Control Of Complex Neural Networks With Delays PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Qualitative Analysis And Control Of Complex Neural Networks With Delays book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Qualitative Analysis and Control of Complex Neural Networks with Delays


Qualitative Analysis and Control of Complex Neural Networks with Delays

Author: Zhanshan Wang

language: en

Publisher: Springer

Release Date: 2015-07-18


DOWNLOAD





This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.

Synchronization Control of Markovian Complex Neural Networks with Time-varying Delays


Synchronization Control of Markovian Complex Neural Networks with Time-varying Delays

Author: Junyi Wang

language: en

Publisher: Springer Nature

Release Date: 2023-11-28


DOWNLOAD





This monograph studies the synchronization control of Markovian complex neural networks with time-varying delays, and the structure of the book is summarized as follows. Chapter 1 introduces the system description and some background knowledges, and also addresses the motivations of this monograph. In Chapter 2, the stochastic synchronization issue of Markovian coupled neural networks with partially unknown transition rates and random coupling strengths is investigated. In Chapter 3, the local synchronization issue of Markovian neutral complex networks with partially information of transition rates is investigated. The new delay-dependent synchronization criteria in terms of LMIs are derived, which depends on the upper and lower bounds of the delays. In Chapter 4, the local synchronization issue of Markovian nonlinear coupled neural networks with uncertain and partially unknown transition rates is investigated. The less conservative local synchronization criteria containing the bounds of delay and delay derivative are obtained based on the novel augmented Lyapunov-Krasovskii functional and a new integral inequality. In Chapter 5, the sampled-data synchronization issue of delayed complex networks with aperiodic sampling interval is investigated based on enhanced input delay approach, which makes full use of the upper bound of the variable sampling interval and the sawtooth structure information of varying input delay. In Chapter 6, the sampled-data synchronization issue of Markovian coupled neural networks with mode-dependent interval time-varying delays and aperiodic sampling intervals is investigated based on an enhanced input delay approach. Furthermore, the mode-dependent sampled-data controllers are proposed based on the delay dependent synchronization criteria. In Chapter 7, the synchronization issue of inertial neural networks with time-varying delays and generally Markovian jumping is investigated. In Chapter 8, we conclude the monograph by briefly summarizing the main theoretical findings.

Learning-Based Adaptive Control


Learning-Based Adaptive Control

Author: Mouhacine Benosman

language: en

Publisher: Butterworth-Heinemann

Release Date: 2016-08-02


DOWNLOAD





Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. - Includes a good number of Mechatronics Examples of the techniques. - Compares and blends Model-free and Model-based learning algorithms. - Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.