Quadratic Programming And Affine Variational Inequalities


Download Quadratic Programming And Affine Variational Inequalities PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quadratic Programming And Affine Variational Inequalities book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Quadratic Programming and Affine Variational Inequalities


Quadratic Programming and Affine Variational Inequalities

Author: Gue Myung Lee

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-02-23


DOWNLOAD





This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequalities. One special feature of the book is that when a certain property of a characteristic map or function is investigated, the authors always try first to establish necessary conditions for it to hold, then they go on to study whether the obtained necessary conditions are also sufficient ones. This helps to clarify the structures of the two classes of problems under consideration. The qualitative results can be used for dealing with algorithms and applications related to quadratic programming problems and affine variational inequalities.

Quadratic Programming and Affine Variational Inequalities


Quadratic Programming and Affine Variational Inequalities

Author: Gue Myung Lee

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-03-30


DOWNLOAD





Quadratic programs and affine variational inequalities represent two fundamental, closely-related classes of problems in the t,heories of mathematical programming and variational inequalities, resp- tively. This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequ- ities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution existence, necessary and sufficient conditions for a point to belong to the solution set, and properties of the solution set. The subsequent two chapters discuss briefly two concrete nlodels (linear fractional vector optimization and the traffic equilibrium problem) whose analysis can benefit a lot from using the results on quadratic programs and affine variational inequalities. There are six chapters devoted to the study of conti- ity and/or differentiability properties of the characteristic maps and functions in quadratic programs and in affine variational inequa- ties where all the components of the problem data are subject to perturbation. Quadratic programs and affine variational inequa- ties under linear perturbations are studied in three other chapters. One special feature of the presentation is that when a certain pr- erty of a characteristic map or function is investigated, we always try first to establish necessary conditions for it to hold, then we go on to study whether the obtained necessary conditions are suf- cient ones. This helps to clarify the structures of the two classes of problems under consideration.

Finite-Dimensional Variational Inequalities and Complementarity Problems


Finite-Dimensional Variational Inequalities and Complementarity Problems

Author: Francisco Facchinei

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-06-14


DOWNLOAD





The ?nite-dimensional nonlinear complementarity problem (NCP) is a s- tem of ?nitely many nonlinear inequalities in ?nitely many nonnegative variables along with a special equation that expresses the complementary relationship between the variables and corresponding inequalities. This complementarity condition is the key feature distinguishing the NCP from a general inequality system, lies at the heart of all constrained optimi- tion problems in ?nite dimensions, provides a powerful framework for the modeling of equilibria of many kinds, and exhibits a natural link between smooth and nonsmooth mathematics. The ?nite-dimensional variational inequality (VI), which is a generalization of the NCP, provides a broad unifying setting for the study of optimization and equilibrium problems and serves as the main computational framework for the practical solution of a host of continuum problems in the mathematical sciences. The systematic study of the ?nite-dimensional NCP and VI began in the mid-1960s; in a span of four decades, the subject has developed into a very fruitful discipline in the ?eld of mathematical programming. The - velopments include a rich mathematical theory, a host of e?ective solution algorithms, a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics. As a result of their broad associations, the literature of the VI/CP has bene?ted from contributions made by mathematicians (pure, applied, and computational), computer scientists, engineers of many kinds (civil, ch- ical, electrical, mechanical, and systems), and economists of diverse exp- tise (agricultural, computational, energy, ?nancial, and spatial).