Quadratic And Higher Degree Forms

Download Quadratic And Higher Degree Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Quadratic And Higher Degree Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Quadratic and Higher Degree Forms

Author: Krishnaswami Alladi
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-08-13
In the last decade, the areas of quadratic and higher degree forms have witnessed dramatic advances. This volume is an outgrowth of three seminal conferences on these topics held in 2009, two at the University of Florida and one at the Arizona Winter School. The volume also includes papers from the two focused weeks on quadratic forms and integral lattices at the University of Florida in 2010.Topics discussed include the links between quadratic forms and automorphic forms, representation of integers and forms by quadratic forms, connections between quadratic forms and lattices, and algorithms for quaternion algebras and quadratic forms. The book will be of interest to graduate students and mathematicians wishing to study quadratic and higher degree forms, as well as to established researchers in these areas. Quadratic and Higher Degree Forms contains research and semi-expository papers that stem from the presentations at conferences at the University of Florida as well as survey lectures on quadratic forms based on the instructional workshop for graduate students held at the Arizona Winter School. The survey papers in the volume provide an excellent introduction to various aspects of the theory of quadratic forms starting from the basic concepts and provide a glimpse of some of the exciting questions currently being investigated. The research and expository papers present the latest advances on quadratic and higher degree forms and their connections with various branches of mathematics.
Normal Forms and Unfoldings for Local Dynamical Systems

Author: James Murdock
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-04-10
The subject of local dynamical systems is concerned with the following two questions: 1. Given an n×n matrix A, describe the behavior, in a neighborhood of the origin, of the solutions of all systems of di?erential equations having a rest point at the origin with linear part Ax, that is, all systems of the form x ? = Ax+··· , n where x? R and the dots denote terms of quadratic and higher order. 2. Describethebehavior(neartheorigin)ofallsystemsclosetoasystem of the type just described. To answer these questions, the following steps are employed: 1. A normal form is obtained for the general system with linear part Ax. The normal form is intended to be the simplest form into which any system of the intended type can be transformed by changing the coordinates in a prescribed manner. 2. An unfolding of the normal form is obtained. This is intended to be the simplest form into which all systems close to the original s- tem can be transformed. It will contain parameters, called unfolding parameters, that are not present in the normal form found in step 1. vi Preface 3. The normal form, or its unfolding, is truncated at some degree k, and the behavior of the truncated system is studied.
The Algebraic and Geometric Theory of Quadratic Forms

Author: Richard S. Elman
language: en
Publisher: American Mathematical Soc.
Release Date: 2008-07-15
This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.