Python Pour Le Data Scientist 3e D

Download Python Pour Le Data Scientist 3e D PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Pour Le Data Scientist 3e D book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Big Data for Insurance Companies

Author: Marine Corlosquet-Habart
language: en
Publisher: John Wiley & Sons
Release Date: 2018-01-19
This book will be a "must" for people who want good knowledge of big data concepts and their applications in the real world, particularly in the field of insurance. It will be useful to people working in finance and to masters students using big data tools. The authors present the bases of big data: data analysis methods, learning processes, application to insurance and position within the insurance market. Individual chapters a will be written by well-known authors in this field.
Python en pratique pour le data scientist

Python s'est imposé ces dernières années comme un langage de programmation incontournable dans de nombreux domaines. En science des données (data science), il se distingue comme un outil essentiel pour mener à bien des projets complexes grâce à son caractère universel. Il constitue aujourd'hui l'outil de choix pour la création de prototypes et un allié incontournable dans les domaines du big data, du machine learning, du deep learning et de l'intelligence artificielle. Cet ouvrage a pour but de vous accompagner dans la découverte de Python, un langage à la fois simple d'utilisation et puissant pour les utilisateurs travaillant avec les données. L'objectif est de vous fournir les connaissances nécessaires pour comprendre et maitriser Python dans le contexte de la data science. Pour quiconque aspire à devenir data scientist ou l'est déjà, la maitrise de Python est désormais un impératif.
Applied Machine Learning for Data Science Practitioners

Author: Vidya Subramanian
language: en
Publisher: John Wiley & Sons
Release Date: 2025-05-28
Single volume reference on using various aspects of data science to evaluate, understand, and solve business problems A reference book for anyone in the field of data science, Applied Machine Learning for Data Science Practitioners walks readers through the end-to-end process of solving any machine learning problem by identifying, choosing, and applying the right solution for the issue at hand. The text enables readers to figure out optimal validation techniques based on the use case and data orientation, choose a range of pertinent models from different types of learning, and score models to apply metrics across all the estimators evaluated. Unlike most books on data science in today's market that jump right into algorithms and coding and focus on the most-used algorithms, this text helps data scientists evaluate all pertinent techniques and algorithms to assess all these machine learning problems and suitable solutions. Readers can make an informed decision on which models and validation techniques to use based on the business problem, data availability, desired outcome, and more. Written by an internationally recognized author in the field of data science, Applied Machine Learning for Data Science Practitioners also covers topics such as: Data preparation, including basic data cleaning, integration, transformation, and compression methods, along with data visualization and exploratory analyses Cross-validation in model validation techniques, including independent, identically distributed, imbalanced, blocked, and grouped data Prediction using regression models and classification using classification models, with applicable performance measurements for each Types of clustering in clustering models based on partition, hierarchy, fuzzy theory, distribution, density, and graph theory Detecting anomalies, including types of anomalies and key terms like noise, rare events, and outliers Applied Machine Learning for Data Science Practitioners is an essential resource for all data scientists and business professionals to cross-validate a range of different algorithms to find an optimal solution. Readers are assumed to have a basic understanding of solving business problems using data, high school level math, statistics, and coding skills.