Python Machine Learning Frameworks

Download Python Machine Learning Frameworks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Machine Learning Frameworks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deep Learning with Python

Author: Francois Chollet
language: en
Publisher: Simon and Schuster
Release Date: 2017-11-30
Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Python Deep Learning

We are at crossroads in deep learning. Today, deep learning developers typically utilize one of the top two machine learning frameworks: Tensorflow, developed by Google/Deepmind, and PyTorch, developed by Facebook. In industry, Tensorflow is still more widely adopted. Still, PyTorch is rapidly up-and-coming in the research community, where 70%-80% of recently submitted conference research papers utilize PyTorch instead of Tensorflow. A recent 2020 Stack Overflow survey of the most popular frameworks and libraries reported that PyTorch was selected by an est 30% of respondents vs. 70% for Tensorflow, with PyTorch nearly doubling in popularity over the last two years. In the next couple of years, as these machine learning frameworks become equal in popularity, a book must well verse developers in both so they can choose the right methodology to help solve their deep learning problems. The problem is that most deep learning books published today focus on just one of the machine learning frameworks. Python Deep Learning would identify both frameworks' pros and cons and then teach deep learning concepts utilizing practical examples from the framework best suited for particular problems. This book also features the APIs and libraries integrated with the respective framework, Keras for Tensorflow and fastai for PyTorch, that make application development and deployment even more straightforward. What this Books Covers: Introduction and overview of deep learning concepts Description of the two machine learning frameworks: Tensorflow and PyTorch, as well as successful examples of their usage Detail the pros and cons of each machine learning framework Overview of the supportive libraries and APIs (including Keras and fastai) for each of the frameworks that make application development simpler Chapter-by-chapter review of the top neural network topologies (CNN, RNN, LSTM, MLP, and several newer variants) Interesting code examples of practical applications of the different neural networks, not the same tired MNIST and other examples often utilized today Final series of code examples (in Tensorflow or PyTorch) of real-world deep learning solutions that utilize more exotic neural network topologies
Deep Learning with Python

Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python alsointroduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. What You Will Learn Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production Who This Book Is For Software developers who want to try out deep learning as a practical solution to a particular problem. Software developers in a data science team who want to take deep learning models developed by data scientists to production.