Python Essential Reference


Download Python Essential Reference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Python Essential Reference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Python Essential Reference


Python Essential Reference

Author: David M. Beazley

language: en

Publisher: Addison-Wesley Professional

Release Date: 2009


DOWNLOAD





Python Essential Reference is the definitive reference guide to the Python programming language--the one authoritative handbook that reliably untangles and explains both the core Python library. Designed for the practicing programmer, the book is concise, to the point, and highly accessible. It also includes detailed information on the Python library and many advanced subjects that is not available in either the official Python documentation or any other single reference source. Thoroughly updated to reflect the significant new programming language features and library modules that have been introduced in Python 2.6 and Python 3, the fourth edition of Python Essential Reference is the complete guide for programmers who need to modernize existing Python code or who are planning an eventual migration to Python 3.

Python Essential Reference


Python Essential Reference

Author: David M Beazley

language: en

Publisher: Addison-Wesley Professional

Release Date: 2009-06-29


DOWNLOAD





Python Essential Reference is the definitive reference guide to the Python programming language — the one authoritative handbook that reliably untangles and explains both the core Python language and the most essential parts of the Python library. Designed for the professional programmer, the book is concise, to the point, and highly accessible. It also includes detailed information on the Python library and many advanced subjects that is not available in either the official Python documentation or any other single reference source. Thoroughly updated to reflect the significant new programming language features and library modules that have been introduced in Python 2.6 and Python 3, the fourth edition of Python Essential Reference is the definitive guide for programmers who need to modernize existing Python code or who are planning an eventual migration to Python 3. Programmers starting a new Python project will find detailed coverage of contemporary Python programming idioms. This fourth edition of Python Essential Reference features numerous improvements, additions, and updates: Coverage of new language features, libraries, and modules Practical coverage of Python's more advanced features including generators, coroutines, closures, metaclasses, and decorators Expanded coverage of library modules related to concurrent programming including threads, subprocesses, and the new multiprocessing module Up-to-the-minute coverage of how to use Python 2.6’s forward compatibility mode to evaluate code for Python 3 compatibility Improved organization for even faster answers and better usability Updates to reflect modern Python programming style and idioms Updated and improved example code Deep coverage of low-level system and networking library modules — including options not covered in the standard documentation

Python Data Science Handbook


Python Data Science Handbook

Author: Jake VanderPlas

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2016-11-21


DOWNLOAD





For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms