Pyspark Essentials


Download Pyspark Essentials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pyspark Essentials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

PySpark Essentials


PySpark Essentials

Author: Robert Johnson

language: en

Publisher: HiTeX Press

Release Date: 2025-01-08


DOWNLOAD





"PySpark Essentials: A Practical Guide to Distributed Computing" is an expertly crafted resource designed to demystify the complexities of distributed data processing with PySpark. Offering an in-depth exploration of PySpark's integration within the Apache Spark ecosystem, this book serves as a foundational text for both newcomers and seasoned data professionals. Readers will gain comprehensive insights into setting up their PySpark environment, navigating its core architecture, and harnessing its power for efficient data manipulation and analysis. Structured to enhance practical understanding, this guide covers a wide array of topics, from the creation and management of DataFrames and Datasets to advanced data processing with Resilient Distributed Datasets (RDDs). It delves into PySpark SQL, empowering users with the ability to perform sophisticated data queries, and explores MLlib for large-scale machine learning applications. The book also highlights strategies for optimizing PySpark applications and managing real-time data with PySpark Streaming. Through clearly defined best practices and troubleshooting tips, readers will be equipped to overcome common challenges, ensuring they can build robust, scalable, and effective data processing solutions. Whether aiming to enter the field of big data or to enhance current skills, this book offers the essential toolkit for mastering PySpark.

Essential PySpark for Scalable Data Analytics


Essential PySpark for Scalable Data Analytics

Author: Sreeram Nudurupati

language: en

Publisher: Packt Publishing Ltd

Release Date: 2021-10-29


DOWNLOAD





Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key FeaturesDiscover how to convert huge amounts of raw data into meaningful and actionable insightsUse Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analyticsPerform data ingestion, cleansing, and integration for ML, data analytics, and data visualizationBook Description Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems. What you will learnUnderstand the role of distributed computing in the world of big dataGain an appreciation for Apache Spark as the de facto go-to for big data processingScale out your data analytics process using Apache SparkBuild data pipelines using data lakes, and perform data visualization with PySpark and Spark SQLLeverage the cloud to build truly scalable and real-time data analytics applicationsExplore the applications of data science and scalable machine learning with PySparkIntegrate your clean and curated data with BI and SQL analysis toolsWho this book is for This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts who are already using data analytics to explore distributed and scalable data analytics. Basic to intermediate knowledge of the disciplines of data engineering, data science, and SQL analytics is expected. General proficiency in using any programming language, especially Python, and working knowledge of performing data analytics using frameworks such as pandas and SQL will help you to get the most out of this book.

Python Data Science Essentials


Python Data Science Essentials

Author: MARK JOHN LADO

language: en

Publisher: Amazon Digital Services LLC - Kdp

Release Date: 2024-03-18


DOWNLOAD





The field of data science has emerged as a critical component in extracting actionable insights and making informed decisions from vast amounts of data. This comprehensive guide explores the fundamentals of data science using the Python language, a versatile toolset widely adopted in the industry. The journey begins with an introduction to data science, outlining its principles, methodologies, and real-world applications. Next, the basics of Python programming are covered, providing a solid foundation for data manipulation and analysis. Data types and structures in Python are then explored, followed by an in-depth look at essential libraries such as NumPy and Pandas, which facilitate efficient data handling and manipulation. The importance of data visualization is emphasized through tutorials on Matplotlib and Seaborn, enabling effective communication of insights and trends. Data cleaning and preprocessing techniques are discussed, addressing common challenges in data quality and preparation. Statistical analysis is introduced as a fundamental aspect of data science, showcasing its applications in hypothesis testing, correlation analysis, and regression modeling using Python. Machine learning concepts are then explored, covering both supervised and unsupervised learning algorithms, including linear regression, decision trees, clustering, and dimensionality reduction. Model evaluation and validation techniques are essential for assessing model performance and generalization ability, ensuring robust and reliable predictions. Additionally, an introduction to deep learning with Python provides insights into advanced neural network architectures and their applications in solving complex problems. Handling big data is a critical aspect of modern data science, and this guide provides an overview of using Python and Spark for scalable and distributed data processing. Real-world case studies across various domains illustrate the practical applications of data science techniques, from e-commerce recommendation systems to healthcare analytics. Finally, best practices and tips for data science projects are discussed, highlighting key considerations for project success, including data exploration, feature engineering, model selection, and collaboration. By mastering these fundamentals, aspiring data scientists can embark on their journey with confidence, equipped to tackle real-world challenges and drive impactful insights from data.