Pulsed Neural Networks


Download Pulsed Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pulsed Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Pulsed Neural Networks


Pulsed Neural Networks

Author: Wolfgang Maass

language: en

Publisher: MIT Press

Release Date: 2001-01-26


DOWNLOAD





Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador

Silicon Implementation of Pulse Coded Neural Networks


Silicon Implementation of Pulse Coded Neural Networks

Author: Mona E. Zaghloul

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





When confronted with the hows and whys of nature's computational engines, some prefer to focus upon neural function: addressing issues of neural system behavior and its relation to natural intelligence. Then there are those who prefer the study of the "mechanics" of neural systems: the nuts and bolts of the "wetware": the neurons and synapses. Those who investigate pulse coded implementations ofartificial neural networks know what it means to stand at the boundary which lies between these two worlds: not just asking why natural neural systems behave as they do, but also how they achieve their marvelous feats. The research results presented in this book not only address more conventional abstract notions of neural-like processing, but also the more specific details ofneural-like processors. It has been established for some time that natural neural systems perform a great deal of information processing via electrochemical pulses. Accordingly, pulse coded neural network concepts are receiving increased attention in artificial neural network research. This increased interest is compounded by continuing advances in the field of VLSI circuit design. This is the first time in history in which it is practical to construct networks of neuron-like circuits of reasonable complexity that can be applied to real problems. We believe that the pioneering work in artificial neural systems presented in this book will lead to further advances that will not only be useful in some practical sense, but may also provide some additional insight into the operation of their natural counterparts.

Spiking Neuron Models


Spiking Neuron Models

Author: Wulfram Gerstner

language: en

Publisher: Cambridge University Press

Release Date: 2002-08-15


DOWNLOAD





Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.