Pseudo Differential Operators And The Nash Moser Theorem


Download Pseudo Differential Operators And The Nash Moser Theorem PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pseudo Differential Operators And The Nash Moser Theorem book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Pseudo-differential Operators and the Nash-Moser Theorem


Pseudo-differential Operators and the Nash-Moser Theorem

Author: Patrick Gérard

language: en

Publisher: American Mathematical Soc.

Release Date:


DOWNLOAD





"An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter 0 with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry."--BOOK JACKET.

Pseudo-differential Operators and the Nash-Moser Theorem


Pseudo-differential Operators and the Nash-Moser Theorem

Author: Serge Alinhac

language: en

Publisher: American Mathematical Soc.

Release Date: 2007


DOWNLOAD





This book presents two essential and apparently unrelated subjects. The first, microlocal analysis and the theory of pseudo-differential operators, is a basic tool in the study of partial differential equations and in analysis on manifolds. The second, the Nash-Moser theorem, continues to be fundamentally important in geometry, dynamical systems and nonlinear PDE. Each of the subjects, which are of interest in their own right as well as for applications, can be learned separately. But the book shows the deep connections between the two themes, particularly in the middle part, which is devoted to Littlewood-Paley theory, dyadic analysis, and the paradifferential calculus and its application to interpolation inequalities. An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter $0$ with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry.

Pseudodifferential Operators and Nonlinear PDE


Pseudodifferential Operators and Nonlinear PDE

Author: Michael Taylor

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. One goal has been to build a bridge between two approaches which have been used in a number of papers written in the last decade, one being the theory of paradifferential operators, pioneered by Bony and Meyer, the other the study of pseudodifferential operators whose symbols have limited regularity. The latter approach is a natural successor to classical devices of deriving estimates for linear PDE whose coefficients have limited regularity in order to obtain results in nonlinear PDE. After developing the requisite tools, we proceed to demonstrate their effectiveness on a range of basic topics in nonlinear PDE. For example, for hyperbolic systems, known sufficient conditions for persistence of solutions are both sharpened and extended in scope. In the treatment of parabolic equations and elliptic boundary problems, it is shown that the results obtained here interface particularly easily with the DeGiorgi-Nash-Moser theory, when that theory applies. To make the work reasonable self-contained, there are appendices treating background topics in harmonic analysis and the DeGiorgi-Nash-Moser theory, as well as an introductory chapter on pseudodifferential operators as developed for linear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.