Protocol Based Sliding Mode Control


Download Protocol Based Sliding Mode Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Protocol Based Sliding Mode Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Protocol-Based Sliding Mode Control


Protocol-Based Sliding Mode Control

Author: Jun Song

language: en

Publisher: CRC Press

Release Date: 2022-09-14


DOWNLOAD





This book discusses the Sliding Mode Control (SMC) problems of networked control systems (NCSs) under various communication protocols including static/dynamic/periodic event-triggered mechanism, and stochastic communication, Round-Robin, weighted try-once-discard, multiple-packet transmission, and the redundant channel transmission protocol. The super-twisting algorithm and the extended-state-observer-based SMC scheme are described in this book for suppressing chattering. Besides, the SMC designs for two-dimensional (1-D) and two-dimensional (2-D) NCSs are illustrated as well. Features: Captures recent advances of theories, techniques, and applications of networked sliding mode control from an engineering-oriented perspective. Includes new design ideas and optimization techniques of networked sliding mode control theory. Provides advanced tools to apply networked sliding mode control techniques in the practical applications. Discusses some new tools to the engineering applications while dealing with the model uncertainties and external disturbances. This book aims at Researchers and professionals in Control Systems, Computer Networks, Internet of Things, and Communication Systems.

Advanced and Optimization Based Sliding Mode Control: Theory and Applications


Advanced and Optimization Based Sliding Mode Control: Theory and Applications

Author: Antonella Ferrara

language: en

Publisher: SIAM

Release Date: 2019-07-01


DOWNLOAD





A compendium of the authors’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.

Advances and Applications in Sliding Mode Control systems


Advances and Applications in Sliding Mode Control systems

Author: Ahmad Taher Azar

language: en

Publisher: Springer

Release Date: 2016-09-10


DOWNLOAD





This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.