Protein Biochemistry And Proteomics


Download Protein Biochemistry And Proteomics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Protein Biochemistry And Proteomics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Protein Biochemistry and Proteomics


Protein Biochemistry and Proteomics

Author: Hubert Rehm

language: en

Publisher: Elsevier

Release Date: 2006-03-24


DOWNLOAD





Hubert Rehm's Protein Biochemistry and Proteomics is more than a laboratory manual; it is a strategic guide that provides the reader with tips and tricks for more successful lab experiments. Using a conversational yet professional tone, Rehm provides an overview of a variety of methods in protein biochemistry/proteomics. He provides short and precise summaries of routine procedures as well as listings of the advantages and disadvantages of alternative methods. Readers will immediately sense that the author if very familiar with the challenges, and frustration of the daily lab routine. Never before has such an honest, tactical guide been available for those conducting lab experiments within the field of biochemistry. - Shows how to avoid experimental dead ends and helps users develop an instinct for the right experiment at the right time - Contains short and precise summaries of routine procedures (e.g. column chromatography, gel electrophoresis), and lists the advantages and disadvantages of alternative methods - Includes over 100 detailed figures and tables - Contains a chapter on proteomics

Proteomics and Protein-Protein Interactions


Proteomics and Protein-Protein Interactions

Author: Gabriel Waksman

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-12-21


DOWNLOAD





The rapidly evolving field of protein science has now come to realize the ubiquity and importance of protein-protein interactions. It had been known for some time that proteins may interact with each other to form functional complexes, but it was thought to be the property of only a handful of key proteins. However, with the advent of high throughput proteomics to monitor protein-protein interactions at an organism level, we can now safely state that protein-protein interactions are the norm and not the exception. Thus, protein function must be understood in the larger context of the various binding complexes that each protein may form with interacting partners at a given time in the life cycle of a cell. Proteins are now seen as forming sophisticated interaction networks subject to remarkable regulation. The study of these interaction networks and regulatory mechanism, which I would like to term "systems proteomics," is one of the thriving fields of proteomics. The bird-eye view that systems proteomics offers should not however mask the fact that proteins are each characterized by a unique set of physical and chemical properties. In other words, no protein looks and behaves like another. This complicates enormously the design of high-throughput proteomics methods. Unlike genes, which, by and large, display similar physico-chemical behaviors and thus can be easily used in a high throughput mode, proteins are not easily amenable to the same treatment. It is thus important to remind researchers active in the proteomics field the fundamental basis of protein chemistry. This book attempts to bridge the two extreme ends of protein science: on one end, systems proteomics, which describes, at a system level, the intricate connection network that proteins form in a cell, and on the other end, protein chemistry and biophysics, which describe the molecular properties of individual proteins and the structural and thermodynamic basis of their interactions within the network. Bridging the two ends of the spectrum is bioinformatics and computational chemistry. Large data sets created by systems proteomics need to be mined for meaningful information, methods need to be designed and implemented to improve experimental designs, extract signal over noise, and reject artifacts, and predictive methods need to be worked out and put to the test. Computational chemistry faces similar challenges. The prediction of binding thermodynamics of protein-protein interaction is still in its infancy. Proteins are large objects, and simplifying assumptions and shortcuts still need to be applied to make simulations manageable, and this despite exponential progress in computer technology. Finally, the study of proteins impacts directly on human health. It is an obvious statement to say that, for decades, enzymes, receptors, and key regulator proteins have been targeted for drug discovery. However, a recent and exciting development is the exploitation of our knowledge of protein-protein interaction for the design of new pharmaceuticals. This presents particular challenges because protein-protein interfaces are generally shallow and interactions are weak. However, progress is clearly being made and the book seeks to provide examples of successes in this area.

Proteins


Proteins

Author: Gary Walsh

language: en

Publisher: John Wiley & Sons

Release Date: 2014-03-13


DOWNLOAD





Proteins Biochemistry and Biotechnology 2e is a definitive source of information for all those interested in protein science, and particularly the commercial production and isolation of specific proteins, and their subsequent utilization for applied purposes in industry and medicine. Fully updated throughout with new or fundamentally revised sections on proteomics as, bioinformatics, protein glycosylation and engineering, well as sections detailing advances in upstream processing and newer protein applications such as enzyme-based biofuel production this new edition has an increased focus on biochemistry to ensure the balance between biochemisty and biotechnology, enhanced with numerous case studies. This second edition is an invaluable text for undergraduates of biochemistry and biotechnology but will also be relevant to students of microbiology, molecular biology, bioinformatics and any branch of the biomedical sciences who require a broad overview of the various medical, diagnostic and industrial uses of proteins. • Provides a comprehensive overview of all aspects of protein biochemisty and protein biotechnology • Includes numerous case studies • Increased focus on protein biochemistry to ensure balance between biochemisty and biotechnology • Includes new section focusing on proteomics as well as sections detailing protein function and enzyme-based biofuel production "With the potential of a standard reference source on the topic, any molecular biotechnologist will profit greatly from having this excellent book. " (Engineering in Life Sciences, 2004; Vol 5; No. 5) “Few texts would be considered competitors, and none compare favorably." (Biochemistry and Molecular Education, July/August 2002) "...The book is well written, making it informative and easy to read..." (The Biochemist, June 2002)