Propagation Phenomena In Real World Networks

Download Propagation Phenomena In Real World Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Propagation Phenomena In Real World Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Propagation Phenomena in Real World Networks

“Propagation, which looks at spreading in complex networks, can be seen from many viewpoints; it is undesirable, or desirable, controllable, the mechanisms generating that propagation can be the topic of interest, but in the end all depends on the setting. This book covers leading research on a wide spectrum of propagation phenomenon and the techniques currently used in its modelling, prediction, analysis and control. Fourteen papers range over topics including epidemic models, models for trust inference, coverage strategies for networks, vehicle flow propagation, bio-inspired routing algorithms, P2P botnet attacks and defences, fault propagation in gene-cellular networks, malware propagation for mobile networks, information propagation in crisis situations, financial contagion in interbank networks, and finally how to maximize the spread of influence in social networks. The compendium will be of interest to researchers, those working in social networking, communications and finance and is aimed at providing a base point for further studies on current research. Above all, by bringing together research from such diverse fields, the book seeks to cross-pollinate ideas, and give the reader a glimpse of the breath of current research.”
Computational Science – ICCS 2020

Author: Valeria V. Krzhizhanovskaya
language: en
Publisher: Springer Nature
Release Date: 2020-06-19
The seven-volume set LNCS 12137, 12138, 12139, 12140, 12141, 12142, and 12143 constitutes the proceedings of the 20th International Conference on Computational Science, ICCS 2020, held in Amsterdam, The Netherlands, in June 2020.* The total of 101 papers and 248 workshop papers presented in this book set were carefully reviewed and selected from 719 submissions (230 submissions to the main track and 489 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track Part III: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Agent-Based Simulations, Adaptive Algorithms and Solvers; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Biomedical and Bioinformatics Challenges for Computer Science Part IV: Classifier Learning from Difficult Data; Complex Social Systems through the Lens of Computational Science; Computational Health; Computational Methods for Emerging Problems in (Dis-)Information Analysis Part V: Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems; Computer Graphics, Image Processing and Artificial Intelligence Part VI: Data Driven Computational Sciences; Machine Learning and Data Assimilation for Dynamical Systems; Meshfree Methods in Computational Sciences; Multiscale Modelling and Simulation; Quantum Computing Workshop Part VII: Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Software Engineering for Computational Science; Solving Problems with Uncertainties; Teaching Computational Science; UNcErtainty QUantIficatiOn for ComputationAl modeLs *The conference was canceled due to the COVID-19 pandemic.
Information and Influence Propagation in Social Networks

Research on social networks has exploded over the last decade. To a large extent, this has been fueled by the spectacular growth of social media and online social networking sites, which continue growing at a very fast pace, as well as by the increasing availability of very large social network datasets for purposes of research. A rich body of this research has been devoted to the analysis of the propagation of information, influence, innovations, infections, practices and customs through networks. Can we build models to explain the way these propagations occur? How can we validate our models against any available real datasets consisting of a social network and propagation traces that occurred in the past? These are just some questions studied by researchers in this area. Information propagation models find applications in viral marketing, outbreak detection, finding key blog posts to read in order to catch important stories, finding leaders or trendsetters, information feed ranking, etc. A number of algorithmic problems arising in these applications have been abstracted and studied extensively by researchers under the garb of influence maximization. This book starts with a detailed description of well-established diffusion models, including the independent cascade model and the linear threshold model, that have been successful at explaining propagation phenomena. We describe their properties as well as numerous extensions to them, introducing aspects such as competition, budget, and time-criticality, among many others. We delve deep into the key problem of influence maximization, which selects key individuals to activate in order to influence a large fraction of a network. Influence maximization in classic diffusion models including both the independent cascade and the linear threshold models is computationally intractable, more precisely #P-hard, and we describe several approximation algorithms and scalable heuristics that have been proposed in the literature. Finally, we also deal with key issues that need to be tackled in order to turn this research into practice, such as learning the strength with which individuals in a network influence each other, as well as the practical aspects of this research including the availability of datasets and software tools for facilitating research. We conclude with a discussion of various research problems that remain open, both from a technical perspective and from the viewpoint of transferring the results of research into industry strength applications.