Propagation Of Nonlinear Waves In Waveguides And Application To Nondestructive Stress Measurement

Download Propagation Of Nonlinear Waves In Waveguides And Application To Nondestructive Stress Measurement PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Propagation Of Nonlinear Waves In Waveguides And Application To Nondestructive Stress Measurement book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Propagation of Nonlinear Waves in Waveguides and Application to Nondestructive Stress Measurement

Propagation of nonlinear waves in waveguides is a field that has received an ever increasing interest in the last few decades. Nonlinear guided waves are excellent candidates for interrogating long waveguide like structures because they combine high sensitivity to structural conditions, typical of nonlinear parameters, with large inspection ranges, characteristic of wave propagation in bounded media./DISS_para DISS_paraThe primary topic of this dissertation is the analysis of ultrasonic waves, including ultrasonic guided waves, propagating in their nonlinear regime and their application to structural health monitoring problems, particularly the measurement of thermal stress in Continuous Welded Rail (CWR). Following an overview of basic physical principles generating nonlinearities in ultrasonic wave propagation, the case of higher-harmonic generation in multi-mode and dispersive guided waves is examined in more detail. A numerical framework is developed in order to predict favorable higher-order generation conditions (i.e. specific guided modes and frequencies) for waveguides of arbitrary cross-sections. This model is applied to various benchmark cases of complex structures. The nonlinear wave propagation model is then applied to the case of a constrained railroad track (CWR) subjected to thermal variations. This study is a direct response to the key need within the railroad transportation community to develop a technique able to measure thermal stresses in CWR, or determine the rail temperature corresponding to a null thermal stress (Neutral Temperature - NT). The numerical simulation phase concludes with a numerical study performed using ABAQUS commercial finite element package. These analyses were crucial in predicting the evolution of the nonlinear parameter [Beta] with thermal stress level acting in the rail. A novel physical model, based on interatomic potential, was developed to explain the origin of nonlinear wave propagation under constrained thermal expansion. In fact, where the classical physics of nonlinear wave propagation assumes finite strains, the case at hand of constrained thermal expansion is, instead, characterized by infinitesimal (ideally zero) strains. Hand-in-hand with the theoretical analyses, a comprehensive program of experimental testing has been conducted at UCSD's Large-Scale Rail NT Test-bed, a unique 70-ft track with controlled temperature excursions constructed at UCSD's Powell Laboratories with government and industry funding. A prototype has been constructed for wayside determination of the rail NT based on the measurement of wave nonlinearities. The experimental results obtained with the prototype in the Large-Scale Test-bed are extremely encouraging, showing an accuracy of only a few degrees for the determination of the rail NT. If confirmed in the field, this result could revolutionize the way CWR are maintained to prevent rail buckling with respect to the thermal stress management problem.
Mechanics of Structures and Materials XXIV

Mechanics of Structures and Materials: Advancements and Challenges is a collection of peer-reviewed papers presented at the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24, Curtin University, Perth, Western Australia, 6-9 December 2016). The contributions from academics, researchers and practising engineers from Australasian, Asia-pacific region and around the world, cover a wide range of topics, including: • Structural mechanics • Computational mechanics • Reinforced and prestressed concrete structures • Steel structures • Composite structures • Civil engineering materials • Fire engineering • Coastal and offshore structures • Dynamic analysis of structures • Structural health monitoring and damage identification • Structural reliability analysis and design • Structural optimization • Fracture and damage mechanics • Soil mechanics and foundation engineering • Pavement materials and technology • Shock and impact loading • Earthquake loading • Traffic and other man-made loadings • Wave and wind loading • Thermal effects • Design codes Mechanics of Structures and Materials: Advancements and Challenges will be of interest to academics and professionals involved in Structural Engineering and Materials Science.
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation

This multi-contributed volume provides a practical, applications-focused introduction to nonlinear acoustical techniques for nondestructive evaluation. Compared to linear techniques, nonlinear acoustical/ultrasonic techniques are much more sensitive to micro-cracks and other types of small distributed damages. Most materials and structures exhibit nonlinear behavior due to the formation of dislocation and micro-cracks from fatigue or other types of repetitive loadings well before detectable macro-cracks are formed. Nondestructive evaluation (NDE) tools that have been developed based on nonlinear acoustical techniques are capable of providing early warnings about the possibility of structural failure before detectable macro-cracks are formed. This book presents the full range of nonlinear acoustical techniques used today for NDE. The expert chapters cover both theoretical and experimental aspects, but always with an eye towards applications. Unlike other titles currently available, which treat nonlinearity as a physics problem and focus on different analytical derivations, the present volume emphasizes NDE applications over detailed analytical derivations. The introductory chapter presents the fundamentals in a manner accessible to anyone with an undergraduate degree in Engineering or Physics and equips the reader with all of the necessary background to understand the remaining chapters. This self-contained volume will be a valuable reference to graduate students through practising researchers in Engineering, Materials Science, and Physics. Represents the first book on nonlinear acoustical techniques for NDE applications Emphasizes applications of nonlinear acoustical techniques Presents the fundamental physics and mathematics behind nonlinear acoustical phenomenon in a simple, easily understood manner Covers a variety of popular NDE techniques based on nonlinear acoustics in a single volume