Proofs And Algorithms

Download Proofs And Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Proofs And Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Proofs and Algorithms

Author: Gilles Dowek
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-01-11
Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.
Modern Cryptography, Probabilistic Proofs and Pseudorandomness

Author: Oded Goldreich
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
You can start by putting the DO NOT DISTURB sign. Cay, in Desert Hearts (1985). The interplay between randomness and computation is one of the most fas cinating scientific phenomena uncovered in the last couple of decades. This interplay is at the heart of modern cryptography and plays a fundamental role in complexity theory at large. Specifically, the interplay of randomness and computation is pivotal to several intriguing notions of probabilistic proof systems and is the focal of the computational approach to randomness. This book provides an introduction to these three, somewhat interwoven domains (i.e., cryptography, proofs and randomness). Modern Cryptography. Whereas classical cryptography was confined to the art of designing and breaking encryption schemes (or "secrecy codes"), Modern Cryptography is concerned with the rigorous analysis of any system which should withstand malicious attempts to abuse it. We emphasize two aspects of the transition from classical to modern cryptography: ( 1) the wide ning of scope from one specific task to an utmost wide general class of tasks; and (2) the move from an engineering-art which strives on ad-hoc tricks to a scientific discipline based on rigorous approaches and techniques.
Graph Theory

Graph Theory: An Introduction to Proofs, Algorithms, and Applications Graph theory is the study of interactions, conflicts, and connections. The relationship between collections of discrete objects can inform us about the overall network in which they reside, and graph theory can provide an avenue for analysis. This text, for the first undergraduate course, will explore major topics in graph theory from both a theoretical and applied viewpoint. Topics will progress from understanding basic terminology, to addressing computational questions, and finally ending with broad theoretical results. Examples and exercises will guide the reader through this progression, with particular care in strengthening proof techniques and written mathematical explanations. Current applications and exploratory exercises are provided to further the reader's mathematical reasoning and understanding of the relevance of graph theory to the modern world. Features The first chapter introduces graph terminology, mathematical modeling using graphs, and a review of proof techniques featured throughout the book The second chapter investigates three major route problems: eulerian circuits, hamiltonian cycles, and shortest paths. The third chapter focuses entirely on trees - terminology, applications, and theory. Four additional chapters focus around a major graph concept: connectivity, matching, coloring, and planarity. Each chapter brings in a modern application or approach. Hints and Solutions to selected exercises provided at the back of the book. Author Karin R. Saoub is an Associate Professor of Mathematics at Roanoke College in Salem, Virginia. She earned her PhD in mathematics from Arizona State University and BA from Wellesley College. Her research focuses on graph coloring and on-line algorithms applied to tolerance graphs. She is also the author of A Tour Through Graph Theory, published by CRC Press.