Projecting Statistical Functionals

Download Projecting Statistical Functionals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Projecting Statistical Functionals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Projecting Statistical Functionals

Author: Tomasz Rychlik
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
About 10 years ago I began studying evaluations of distributions of or der statistics from samples with general dependence structure. Analyzing in [78] deterministic inequalities for arbitrary linear combinations of order statistics expressed in terms of sample moments, I observed that we obtain the optimal bounds once we replace the vectors of original coefficients of the linear combinations by the respective Euclidean norm projections onto the convex cone of vectors with nondecreasing coordinates. I further veri fied that various optimal evaluations of order and record statistics, derived earlier by use of diverse techniques, may be expressed by means of projec tions. In Gajek and Rychlik [32], we formulated for the first time an idea of applying projections onto convex cones for determining accurate moment bounds on the expectations of order statistics. Also for the first time, we presented such evaluations for non parametric families of distributions dif ferent from families of arbitrary, symmetric, and nonnegative distributions. We realized that this approach makes it possible to evaluate various func tionals of great importance in applied probability and statistics in different restricted families of distributions. The purpose of this monograph is to present the method of using pro jections of elements of functional Hilbert spaces onto convex cones for es tablishing optimal mean-variance bounds of statistical functionals, and its wide range of applications. This is intended for students, researchers, and practitioners in probability, statistics, and reliability.
Statistical Matching

Author: Susanne Rässler
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Data fusion or statistical file matching techniques merge data sets from different survey samples to solve the problem that exists when no single file contains all the variables of interest. Media agencies are merging television and purchasing data, statistical offices match tax information with income surveys. Many traditional applications are known but information about these procedures is often difficult to achieve. The author proposes the use of multiple imputation (MI) techniques using informative prior distributions to overcome the conditional independence assumption. By means of MI sensitivity of the unconditional association of the variables not jointy observed can be displayed. An application of the alternative approaches with real world data concludes the book.