Progress In Mathematical Programming

Download Progress In Mathematical Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Progress In Mathematical Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Progress in Mathematical Programming

Author: Nimrod Megiddo
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."
Progress in Mathematics

Author: R. V. Gamkrelidze
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
This volume contains two review articles: "Stochastic Pro gramming" by Vo V. Kolbin, and "Application of Queueing-Theoretic Methods in Operations Research, " by N. Po Buslenko and A. P. Cherenkovo The first article covers almost all aspects of stochastic programming. Many of the results presented in it have not pre viously been surveyed in the Soviet literature and are of interest to both mathematicians and economists. The second article com prises an exhaustive treatise on the present state of the art of the statistical methods of queueing theory and the statistical modeling of queueing systems as applied to the analysis of complex systems. Contents STOCHASTIC PROGRAMMING V. V. Kolbin Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 § 1. The Geometry of Stochastic Linear Programming Problems. . . . . . . . . . . . . . . . . . . . 5 § 2. Chance-Constrained Problems . . . . . . . . . 8 § 3. Rigorous Statement of stochastic Linear Programming Problems . . . . . . . . . . 16 § 4. Game-Theoretic Statement of Stochastic Linear Programming Problems. . . . . . . . 18 § 5. Nonrigorous Statement of SLP Problems . . . 19 § 6. Existence of Domains of Stability of the Solutions of SLP Problems . . . . . . . . . 29 § 7. Stability of a Solution in the Mean. . . . . . . . . . . . 30 § 8. Dual Stochastic Linear Programming Problems. . . 37 § 9. Some Algorithms for the Solution of Stochastic Linear Programming Problems . . . . . . . . . . 40 § 10. Stochastic Nonlinear Programming: Some First Results . . . . . . . . . . . . . . . . . . . . . . 42 § 11. The Two-Stage SNLP Problem. . . . . . . . . . . . 47 § 12. Optimality and Existence of a Plan in Stochastic Nonlinear Programming Problems. 58 Literature Cited . . . . . . . . . . . . . . . . .. . . . . . . . . .
Progress in Mathematical Programming

Most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear programming were presented. The common feature to most of the new polynomial algorithms is the path-following aspect. The method of McCormick-Sofer for convex programming also follows a path. Efforts in the theoretical analysis of algorithms was also reported. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference it was still not clear weather the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms. In other presentations, Fourer-Gay-Kernighan presented a programming language (AMPL) for mathematical programming, David Gay presented graphic illustrations of the performance of Karmarkar's algorithm, and James Ho discussed embedding of linear programming in commonly used spreadsheets.