Progress In Information Geometry

Download Progress In Information Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Progress In Information Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Progress in Information Geometry

This book focuses on information-geometric manifolds of structured data and models and related applied mathematics. It features new and fruitful interactions between several branches of science: Advanced Signal/Image/Video Processing, Complex Data Modeling and Analysis, Statistics on Manifolds, Topology/Machine/Deep Learning and Artificial Intelligence. The selection of applications makes the book a substantial information source, not only for academic scientist but it is also highly relevant for industry. The book project was initiated following discussions at the international conference GSI’2019 – Geometric Science of Information that was held at ENAC, Toulouse (France).
Methods of Information Geometry

Author: Shun-ichi Amari
language: en
Publisher: American Mathematical Soc.
Release Date: 2000
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the $\alpha$-connections. The duality between the $\alpha$-connection and the $(-\alpha)$-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability distributions, and the general theory of dual affine connections.The second half of the text provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, convex analysis, neural networks, and affine differential geometry. The book can serve as a suitable text for a topics course for advanced undergraduates and graduate students.
Information Geometry

This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience.