Progress In Approximation Theory


Download Progress In Approximation Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Progress In Approximation Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Progress in Approximation Theory and Applicable Complex Analysis


Progress in Approximation Theory and Applicable Complex Analysis

Author: Narendra Kumar Govil

language: en

Publisher: Springer

Release Date: 2017-04-03


DOWNLOAD





Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934–2013) of the Université de Montréal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.

Progress in Approximation Theory


Progress in Approximation Theory

Author: A.A. Gonchar

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





Designed to give a contemporary international survey of research activities in approximation theory and special functions, this book brings together the work of approximation theorists from North America, Western Europe, Asia, Russia, the Ukraine, and several other former Soviet countries. Contents include: results dealing with q-hypergeometric functions, differencehypergeometric functions and basic hypergeometric series with Schur function argument; the theory of orthogonal polynomials and expansions, including generalizations of Szegö type asymptotics and connections with Jacobi matrices; the convergence theory for Padé and Hermite-Padé approximants, with emphasis on techniques from potential theory; material on wavelets and fractals and their relationship to invariant measures and nonlinear approximation; generalizations of de Brange's in equality for univalent functions in a quasi-orthogonal Hilbert space setting; applications of results concerning approximation by entire functions and the problem of analytic continuation; and other topics.

Progress in Approximation Theory


Progress in Approximation Theory

Author: Paul G. Nevai

language: en

Publisher:

Release Date: 1991


DOWNLOAD