Proceedings Of The 1993 Connectionist Models Summer School

Download Proceedings Of The 1993 Connectionist Models Summer School PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Proceedings Of The 1993 Connectionist Models Summer School book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Proceedings of the 1993 Connectionist Models Summer School

The result of the 1993 Connectionist Models Summer School, the papers in this volume exemplify the tremendous breadth and depth of research underway in the field of neural networks. Although the slant of the summer school has always leaned toward cognitive science and artificial intelligence, the diverse scientific backgrounds and research interests of accepted students and invited faculty reflect the broad spectrum of areas contributing to neural networks, including artificial intelligence, cognitive science, computer science, engineering, mathematics, neuroscience, and physics. Providing an accurate picture of the state of the art in this fast-moving field, the proceedings of this intense two-week program of lectures, workshops, and informal discussions contains timely and high-quality work by the best and the brightest in the neural networks field.
Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society

This volume features the complete text of all regular papers, posters, and summaries of symposia presented at the 16th annual meeting of the Cognitive Science Society.
Deep Reinforcement Learning

Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine, and famously contributed to the success of AlphaGo. Furthermore, it opens up numerous new applications in domains such as healthcare, robotics, smart grids and finance. Divided into three main parts, this book provides a comprehensive and self-contained introduction to DRL. The first part introduces the foundations of deep learning, reinforcement learning (RL) and widely used deep RL methods and discusses their implementation. The second part covers selected DRL research topics, which are useful for those wanting to specialize in DRL research. To help readers gain a deep understanding of DRL and quickly apply the techniques in practice, the third part presents mass applications, such as the intelligent transportation system and learning to run, with detailed explanations. The book is intended for computer science students, both undergraduate and postgraduate, who would like to learn DRL from scratch, practice its implementation, and explore the research topics. It also appeals to engineers and practitioners who do not have strong machine learning background, but want to quickly understand how DRL works and use the techniques in their applications.