Probability With Stem Applications


Download Probability With Stem Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probability With Stem Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Probability with STEM Applications


Probability with STEM Applications

Author: Matthew A. Carlton

language: en

Publisher: John Wiley & Sons

Release Date: 2020-12-22


DOWNLOAD





Probability with STEM Applications, Third Edition, is an accessible and well-balanced introduction to post-calculus applied probability. Integrating foundational mathematical theory and the application of probability in the real world, this leading textbook engages students with unique problem scenarios and more than 1100 exercises of varying levels of difficulty. The text uses a hands-on, software-oriented approach to the subject of probability. MATLAB and R examples and exercises — complemented by computer code that enables students to create their own simulations — demonstrate the importance of software to solve problems that cannot be obtained analytically. Revised and updated throughout, the textbook covers basic properties of probability, random variables and their probability distributions, a brief introduction to statistical inference, Markov chains, stochastic processes, and signal processing. This new edition is the perfect text for a one-semester course and contains enough additional material for an entire academic year. The blending of theory and application will appeal not only to mathematics and statistics majors but also to engineering students, and quantitative business and social science majors. New to this Edition: Offered as a traditional textbook and in enhanced ePub format, containing problems with show/hide solutions and interactive applets and illustrations Revised and expanded chapters on conditional probability and independence, families of continuous distributions, and Markov chains New problems and updated problem sets throughout Features: Introduces basic theoretical knowledge in the first seven chapters, serving as a self-contained textbook of roughly 650 problems Provides numerous up-to-date examples and problems in R and MATLAB Discusses examples from recent journal articles, classic problems, and various practical applications Includes a chapter specifically designed for electrical and computer engineers, suitable for a one-term class on random signals and noise Contains appendices of statistical tables, background mathematics, and important probability distributions

Fuzzy Logic and Probability Applications


Fuzzy Logic and Probability Applications

Author: Timothy J. Ross

language: en

Publisher: SIAM

Release Date: 2002-01-01


DOWNLOAD





Probabilists and fuzzy enthusiasts tend to disagree about which philosophy is best and they rarely work together. As a result, textbooks usually suggest only one of these methods for problem solving, but not both. This book is an exception. The authors, investigators from both fields, have combined their talents to provide a practical guide showing that both fuzzy logic and probability have their place in the world of problem solving. They work together with mutual benefit for both disciplines, providing scientists and engineers with examples of and insight into the best tool for solving problems involving uncertainty. Fuzzy Logic and Probability Applications: Bridging the Gap makes an honest effort to show both the shortcomings and benefits of each technique, and even demonstrates useful combinations of the two. It provides clear descriptions of both fuzzy logic and probability, as well as the theoretical background, examples, and applications from both fields, making it a useful hands-on workbook for members of both camps. It contains enough theory and references to fundamental work to provide firm ground for both engineers and scientists at the undergraduate level and above. Readers should have a familiarity with mathematics through calculus.

Probability with R


Probability with R

Author: Jane M. Horgan

language: en

Publisher: John Wiley & Sons

Release Date: 2019-12-18


DOWNLOAD





Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.