Probability With Applications In Engineering Science And Technology

Download Probability With Applications In Engineering Science And Technology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probability With Applications In Engineering Science And Technology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Probability with Applications in Engineering, Science, and Technology

This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8—available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations. New to this edition • Updated and re-worked Recommended Coverage for instructors, detailing which courses should use the textbook and how to utilize different sections for various objectives and time constraints • Extended and revised instructions and solutions to problem sets • Overhaul of Section 7.7 on continuous-time Markov chains • Supplementary materials include three sample syllabi and updated solutions manuals for both instructors and students
Probability with R

Provides a comprehensive introduction to probability with an emphasis on computing-related applications This self-contained new and extended edition outlines a first course in probability applied to computer-related disciplines. As in the first edition, experimentation and simulation are favoured over mathematical proofs. The freely down-loadable statistical programming language R is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in Probability with R: An Introduction with Computer Science Applications, Second Edition cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems. Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more. This second edition includes: improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book. Primarily addressed to students of computer science and related areas, Probability with R: An Introduction with Computer Science Applications, Second Edition is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.
Basic Probability Theory with Applications

Author: Mario Lefebvre
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-10-03
The main intended audience for this book is undergraduate students in pure and applied sciences, especially those in engineering. Chapters 2 to 4 cover the probability theory they generally need in their training. Although the treatment of the subject is surely su?cient for non-mathematicians, I intentionally avoided getting too much into detail. For instance, topics such as mixed type random variables and the Dirac delta function are only brie?y mentioned. Courses on probability theory are often considered di?cult. However, after having taught this subject for many years, I have come to the conclusion that one of the biggest problems that the students face when they try to learn probability theory, particularly nowadays, is their de?ciencies in basic di?erential and integral calculus. Integration by parts, for example, is often already forgotten by the students when they take a course on probability. For this reason, I have decided to write a chapter reviewing the basic elements of di?erential calculus. Even though this chapter might not be covered in class, the students can refer to it when needed. In this chapter, an e?ort was made to give the readers a good idea of the use in probability theory of the concepts they should already know. Chapter 2 presents the main results of what is known as elementary probability, including Bayes’ rule and elements of combinatorial analysis.