Probability Theory And Its Applications In China

Download Probability Theory And Its Applications In China PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probability Theory And Its Applications In China book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Probability Theory and Its Applications in China

Probability theory has always been an active field of research in China, but, until recently, almost all of this research was written in Chinese. This book contains surveys by some of China's leading probabilists, with a fairly complete coverage of theoretical probability and selective coverage of applied topics. The purpose of the book is to provide an account of the most significant results in probability obtained in China in the past few decades and to promote communication between probabilists in China and those in other countries. This collection will be of interest to graduate students and researchers in mathematics and probability theory, as well as to researchers in such areas as physics, engineering, biochemistry, and information science. Among the topics covered here are: stochastic analysis, stochastic differential equations, Dirichlet forms, Brownian motion and diffusion, potential theory, geometry of manifolds, semi-martingales, jump Markov processes, interacting particle systems, entropy production of Markov processes, renewal sequences and p-functions, multi-parameter stochastic processes, stationary random fields, limit theorems, strong approximations, large deviations, stochastic control systems, and probability problems in information theory.
From Markov Chains to Non-equilibrium Particle Systems

This book is representative of the work of Chinese probabilists on probability theory and its applications in physics. It presents a unique treatment of general Markov jump processes: uniqueness, various types of ergodicity, Markovian couplings, reversibility, spectral gap, etc. It also deals with a typical class of non-equilibrium particle systems, including the typical Schlögl model taken from statistical physics. The constructions, ergodicity and phase transitions for this class of Markov interacting particle systems, namely, reaction-diffusion processes, are presented. In this new edition, a large part of the text has been updated and two-and-a-half chapters have been rewritten. The book is self-contained and can be used in a course on stochastic processes for graduate students.