Probability Models And Applications Revised Second Edition

Download Probability Models And Applications Revised Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probability Models And Applications Revised Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Probability Models And Applications (Revised Second Edition)

Written by renowned experts in the field, this reissue of a textbook has as its unifying theme the role that probability models have had, and continue to have, in scientific and practical applications. It includes many examples, with actual data, of real-world use of probability models, while expositing the mathematical theory of probability at an introductory calculus-based level. Detailed descriptions of the properties and applications of probability models that have successfully modeled real phenomena are given, as well as an explanation of methods for testing goodness of fit of these models. Readers will receive a firm foundation in techniques for deriving distributions of various summaries of data that will prepare them for subsequent studies of statistics, as well as a solid grounding in concepts such as that of conditional probability that will prepare them for more advanced courses in stochastic processes.
Probability Models in Engineering and Science

Certainty exists only in idealized models. Viewed as the quantification of uncertainties, probabilitry and random processes play a significant role in modern engineering, particularly in areas such as structural dynamics. Unlike this book, however, few texts develop applied probability in the practical manner appropriate for engineers. Probability Models in Engineering and Science provides a comprehensive, self-contained introduction to applied probabilistic modeling. The first four chapters present basic concepts in probability and random variables, and while doing so, develop methods for static problems. The remaining chapters address dynamic problems, where time is a critical parameter in the randomness. Highlights of the presentation include numerous examples and illustrations and an engaging, human connection to the subject, achieved through short biographies of some of the key people in the field. End-of-chapter problems help solidify understanding and footnotes to the literature expand the discussions and introduce relevant journals and texts. This book builds the background today's engineers need to deal explicitly with the scatter observed in experimental data and with intricate dynamic behavior. Designed for undergraduate and graduate coursework as well as self-study, the text's coverage of theory, approximation methods, and numerical methods make it equally valuable to practitioners.