Probabilistic Modeling In System Engineering

Download Probabilistic Modeling In System Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic Modeling In System Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Probabilistic Modeling in System Engineering

Author: Andrey Kostogryzov
language: en
Publisher: BoD – Books on Demand
Release Date: 2018-09-26
This book is intended for systems analysts, designers, developers, users, experts, as well as those involved in quality, risk, safety and security management, and, of course, scientists and students. The various sets of original and traditional probabilistic models and interesting results of their applications to the research of different systems are presented. The models are understandable and applicable for solving system engineering problems: to optimize system requirements, compare different processes, rationale technical decisions, carry out tests, adjust technological parameters, and predict and analyze quality and risks. The engineering decisions, scientifically proven by the proposed models and software tools, can provide purposeful, essential improvement of quality and mitigation of risks, and reduce the expense of operating systems. Models, methods, and software tools can also be used in education for system analysis and mathematical modeling on specializations, for example "systems engineering," "operations research," "enterprise management," "project management," "risk management," "quality of systems," "safety and security," "smart systems," "system of systems," etc.
Probabilistic Modeling in System Engineering

This book is intended for systems analysts, designers, developers, users, experts, as well as those involved in quality, risk, safety and security management, and, of course, scientists and students. The various sets of original and traditional probabilistic models and interesting results of their applications to the research of different systems are presented. The models are understandable and applicable for solving system engineering problems: to optimize system requirements, compare different processes, rationale technical decisions, carry out tests, adjust technological parameters, and predict and analyze quality and risks. The engineering decisions, scientifically proven by the proposed models and software tools, can provide purposeful, essential improvement of quality and mitigation of risks, and reduce the expense of operating systems. Models, methods, and software tools can also be used in education for system analysis and mathematical modeling on specializations, for example ""systems engineering,"" ""operations research,"" ""enterprise management,"" ""project management,"" ""risk management,"" ""quality of systems,"" ""safety and security,"" ""smart systems,"" ""system of systems,"" etc.
Handbook of Probabilistic Models

Author: Pijush Samui
language: en
Publisher: Butterworth-Heinemann
Release Date: 2019-10-08
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more.