Probabilistic Machine Learning For Finance And Investing


Download Probabilistic Machine Learning For Finance And Investing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic Machine Learning For Finance And Investing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Probabilistic Machine Learning for Finance and Investing


Probabilistic Machine Learning for Finance and Investing

Author: Deepak Kanungo

language: en

Publisher: O'Reilly Media

Release Date: 2023-10-03


DOWNLOAD





Whether based on academic theories or machine learning strategies, all financial models are at the mercy of modeling errors that can be mitigated but not eliminated. Probabilistic ML technologies are based on a simple and intuitive definition of probability and the rigorous calculus of probability theory. These systems treat uncertainties and errors of financial and investing systems as features, not bugs. And they quantify uncertainty generated from inexact inputs and outputs as probability distributions, not point estimates. This makes for realistic financial inferences and predictions that are useful for decision-making and risk management. These systems are capable of warning us when their inferences and predictions are no longer useful in the current market environment. Probabilistic ML is the next generation ML framework and technology for AI-powered financial and investing systems for many reasons. By moving away from flawed statistical methodologies (and a restrictive conventional view of probability as a limiting frequency), you'll move toward an intuitive view of probability as a mathematically rigorous statistical framework that quantifies uncertainty holistically and successfully. This book shows you how.

Probabilistic Machine Learning for Finance and Investing


Probabilistic Machine Learning for Finance and Investing

Author: Deepak K. Kanungo

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2023-08-14


DOWNLOAD





Whether based on academic theories or discovered empirically by humans and machines, all financial models are at the mercy of modeling errors that can be mitigated but not eliminated. Probabilistic ML technologies are based on a simple and intuitive definition of probability and the rigorous calculus of probability theory. Unlike conventional AI systems, probabilistic machine learning (ML) systems treat errors and uncertainties as features, not bugs. They quantify uncertainty generated from inexact model inputs and outputs as probability distributions, not point estimates. Most importantly, these systems are capable of forewarning us when their inferences and predictions are no longer useful in the current market environment. These ML systems provide realistic support for financial decision-making and risk management in the face of uncertainty and incomplete information. Probabilistic ML is the next generation ML framework and technology for AI-powered financial and investing systems for many reasons. They are generative ensembles that learn continually from small and noisy financial datasets while seamlessly enabling probabilistic inference, prediction and counterfactual reasoning. By moving away from flawed statistical methodologies (and a restrictive conventional view of probability as a limiting frequency), you can embrace an intuitive view of probability as logic within an axiomatic statistical framework that comprehensively and successfully quantifies uncertainty. This book shows you why and how to make that transition.

Probabilistic Machine Learning for Finance and Investing


Probabilistic Machine Learning for Finance and Investing

Author: Deepak K. Kanungo

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2023-08-14


DOWNLOAD





There are several reasons why probabilistic machine learning represents the next-generation ML framework and technology for finance and investing. This generative ensemble learns continually from small and noisy financial datasets while seamlessly enabling probabilistic inference, retrodiction, prediction, and counterfactual reasoning. Probabilistic ML also lets you systematically encode personal, empirical, and institutional knowledge into ML models. Whether they're based on academic theories or ML strategies, all financial models are subject to modeling errors that can be mitigated but not eliminated. Probabilistic ML systems treat uncertainties and errors of financial and investing systems as features, not bugs. And they quantify uncertainty generated from inexact inputs and outputs as probability distributions, not point estimates. This makes for realistic financial inferences and predictions that are useful for decision-making and risk management. Unlike conventional AI, these systems are capable of warning us when their inferences and predictions are no longer useful in the current market environment. By moving away from flawed statistical methodologies and a restrictive conventional view of probability as a limiting frequency, you’ll move toward an intuitive view of probability as logic within an axiomatic statistical framework that comprehensively and successfully quantifies uncertainty. This book shows you how.