Probabilistic Constraint Logic Programming

Download Probabilistic Constraint Logic Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic Constraint Logic Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Foundations of Probabilistic Logic Programming

Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.
Constraint Satisfaction in Logic Programming

This book tackles classic problems from operations research and circuit design using a logic programming language embedding consistency techniques, a paradigm emerging from artificial intelligence research. Van Hentenryck proposes a new approach to solving discrete combinatorial problems using these techniques.Logic programming serves as a convenient language for stating combinatorial problems, but its "generate and test" paradigm leads to inefficient programs. Van Hentenryck's approach preserves one of the most useful features of logic programming - the duality of its semantics - yet allows a short development time for the programs while preserving most of the efficiency of special purpose programs written in a procedural language.Embedding consistency techniques in logic programming allows for ease and flexibility of programming and short development time because constraint propagation and tree-search programming are abstracted away from the user. It also enables logic programs to be executed efficiently as consistency techniques permit an active use of constraints to remove combinations of values that cannot appear in a solution Van Hentenryck presents a comprehensive overview of this new approach from its theoretical foundations to its design and implementation, including applications to real life combinatorial problems.The ideas introduced in "Constraint Satisfaction in Logic Programming "have been used successfully to solve more than a dozen practical problems in operations research and circuit design, including disjunctive scheduling, warehouse location, cutting stock car sequencing, and microcode labeling problems.Pascal Van Hentenryck is a member of the research staff at the European Computer Industry Research Centre. "Constraint Satisfaction in Logic Programming" is based on research for the Centre's CHIP project. As an outgrowth of this project, a new language (CHIP) that will include consistency techniques has been developed for commercial use. The book is included in the Logic Programming series edited by Ehud Shapiro.