Probabilistic Combinatorics And Its Applications


Download Probabilistic Combinatorics And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Probabilistic Combinatorics And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Probabilistic Combinatorics and Its Applications


Probabilistic Combinatorics and Its Applications

Author: Bľa Bollobs̀ (ed)

language: en

Publisher: American Mathematical Soc.

Release Date: 1991


DOWNLOAD





Probabilistic methods have become a vital tool in the arsenal of every combinatorialist. The theory of random graphs is still a prime area for the use of probabilistic methods, and, over the years, these methods have also proved of paramount importance in many associated areas such as the design and analysis of computer algorithms. In recent years, probabilistic combinatorics has undergone revolutionary changes as the result of the appearance of some exciting new techniques such as martingale inequalities, discrete isoperimetric inequalities, Fourier analysis on groups, eigenvalue techniques, branching processes, and rapidly mixing Markov chains. The aim of this volume is to review briefly the classical results in the theory of random graphs and to present several of the important recent developments in probabilistic combinatorics, together with some applications. The first paper contains a brief introduction to the theory of random graphs. The second paper reviews explicit constructions of random-like graphs and discusses graphs having a variety of useful properties. Isoperimetric inequalities, of paramount importance in probabilistic combinatorics, are covered in the third paper. The chromatic number of random graphs is presented in the fourth paper, together with a beautiful inequality due to Janson and the important and powerful Stein-Chen method for Poisson approximation. The aim of the fifth paper is to present a number of powerful new methods for proving that a Markov chain is "rapidly mixing" and to survey various related questions, while the sixth paper looks at the same topic in a very different context. For the random walk on the cube, the convergence to the stable distribution is best analysed through Fourier analysis; the final paper examines this topic and proceeds to several more sophisticated applications. Open problems can be found throughout each paper.

Probabilistic Combinatorics and Its Applications


Probabilistic Combinatorics and Its Applications

Author: Béla Bollobás

language: en

Publisher: American Mathematical Society(RI)

Release Date: 2014-05-10


DOWNLOAD





Probabilistic methods have become a vital tool in the arsenal of every combinatorialist. The theory of random graphs is still a prime area for the use of probabilistic methods, and, over the years, these methods have also proved of paramount importance in many associated areas such as the design and analysis of computer algorithms. In recent years, probabilistic combinatorics has undergone revolutionary changes as the result of the appearance of some exciting new techniques such as martingale inequalities, discrete isoperimetric inequalities, Fourier analysis on groups, eigenvalue techniques, branching processes, and rapidly mixing Markov chains. The aim of this volume is to review briefly the classical results in the theory of random graphs and to present several of the important recent developments in probabilistic combinatorics, together with some applications.

Probabilistic Methods for Algorithmic Discrete Mathematics


Probabilistic Methods for Algorithmic Discrete Mathematics

Author: Michel Habib

language: en

Publisher: Springer Science & Business Media

Release Date: 1998-08-19


DOWNLOAD





The book gives an accessible account of modern pro- babilistic methods for analyzing combinatorial structures and algorithms. Each topic is approached in a didactic manner but the most recent developments are linked to the basic ma- terial. Extensive lists of references and a detailed index will make this a useful guide for graduate students and researchers. Special features included: - a simple treatment of Talagrand inequalities and their applications - an overview and many carefully worked out examples of the probabilistic analysis of combinatorial algorithms - a discussion of the "exact simulation" algorithm (in the context of Markov Chain Monte Carlo Methods) - a general method for finding asymptotically optimal or near optimal graph colouring, showing how the probabilistic method may be fine-tuned to explit the structure of the underlying graph - a succinct treatment of randomized algorithms and derandomization techniques