Principles Of Quantum General Relativity

Download Principles Of Quantum General Relativity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principles Of Quantum General Relativity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Principles Of Quantum General Relativity

Author: Eduard Prugovecki
language: en
Publisher: World Scientific
Release Date: 1995-01-20
This monograph explains and analyzes the principles of a quantum-geometric framework for the unification of general relativity and quantum theory. By taking advantage of recent advances in areas like fibre and superfibre bundle theory, Krein spaces, gauge fields and groups, coherent states, etc., these principles can be consistently incorporated into a framework that can justifiably be said to provide the foundations for a quantum extrapolation of general relativity. This volume aims to present this approach in a way which places as much emphasis on fundamental physical ideas as on their precise mathematical implementation. References are also made to the ideas of Einstein, Bohr, Born, Dirac, Heisenberg and others, in order to set the work presented here in an appropriate historical context.
Modern Canonical Quantum General Relativity

Author: Thomas Thiemann
language: en
Publisher: Cambridge University Press
Release Date: 2008-11-13
This book provides a complete treatise of the canonical quantisation of general relativity and the loop quantum gravity theory. Mathematical concepts are provided, so it can be read by graduate students with a basic knowledge of quantum field theory or general relativity.
A First Course on Symmetry, Special Relativity and Quantum Mechanics

This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics. Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing. Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.