Principles Of Data Wrangling


Download Principles Of Data Wrangling PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Principles Of Data Wrangling book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Principles of Data Wrangling


Principles of Data Wrangling

Author: Tye Rattenbury

language: en

Publisher: "O'Reilly Media, Inc."

Release Date: 2017-06-29


DOWNLOAD





A key task that any aspiring data-driven organization needs to learn is data wrangling, the process of converting raw data into something truly useful. This practical guide provides business analysts with an overview of various data wrangling techniques and tools, and puts the practice of data wrangling into context by asking, "What are you trying to do and why?" Wrangling data consumes roughly 50-80% of an analyst’s time before any kind of analysis is possible. Written by key executives at Trifacta, this book walks you through the wrangling process by exploring several factors—time, granularity, scope, and structure—that you need to consider as you begin to work with data. You’ll learn a shared language and a comprehensive understanding of data wrangling, with an emphasis on recent agile analytic processes used by many of today’s data-driven organizations. Appreciate the importance—and the satisfaction—of wrangling data the right way. Understand what kind of data is available Choose which data to use and at what level of detail Meaningfully combine multiple sources of data Decide how to distill the results to a size and shape that can drive downstream analysis

Principles of Data Wrangling


Principles of Data Wrangling

Author: Joseph Hellerstein M.. Tye Rattenbury. Jeffrey Heer. Sean Kandel. Connor Carreras

language: en

Publisher:

Release Date: 2017


DOWNLOAD





Introduction to Data Science


Introduction to Data Science

Author: Rafael A. Irizarry

language: en

Publisher: CRC Press

Release Date: 2019-11-12


DOWNLOAD





Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. A complete solutions manual is available to registered instructors who require the text for a course.