Primality Testing And Integer Factorization In Public Key Cryptography

Download Primality Testing And Integer Factorization In Public Key Cryptography PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Primality Testing And Integer Factorization In Public Key Cryptography book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Primality Testing and Integer Factorization in Public-Key Cryptography

Author: Song Y. Yan
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-04-03
Intended for advanced level students in computer science and mathematics, this key text, now in a brand new edition, provides a survey of recent progress in primality testing and integer factorization, with implications for factoring based public key cryptography. For this updated and revised edition, notable new features include a comparison of the Rabin-Miller probabilistic test in RP, the Atkin-Morain elliptic curve test in ZPP and the AKS deterministic test.
Primality Testing and Integer Factorization in Public-Key Cryptography

Author: Song Y. Yan
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
Primality Testing and Integer Factorization in Public-Key Cryptography introduces various algorithms for primality testing and integer factorization, with their applications in public-key cryptography and information security. More specifically, this book explores basic concepts and results in number theory in Chapter 1. Chapter 2 discusses various algorithms for primality testing and prime number generation, with an emphasis on the Miller-Rabin probabilistic test, the Goldwasser-Kilian and Atkin-Morain elliptic curve tests, and the Agrawal-Kayal-Saxena deterministic test for primality. Chapter 3 introduces various algorithms, particularly the Elliptic Curve Method (ECM), the Quadratic Sieve (QS) and the Number Field Sieve (NFS) for integer factorization. This chapter also discusses some other computational problems that are related to factoring, such as the square root problem, the discrete logarithm problem and the quadratic residuosity problem.
Computational Number Theory and Modern Cryptography

The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.