Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel

Download Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive Hr Analytics Text Mining And Organizational Network Analysis With Excel book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Predictive HR Analytics, Text Mining and Organizational Network Analysis with Excel

A lot of organizational data is often untapped unstructured data in the form of text & numbers. You don't need to spend months learning R programming & you don't need to buy expensive SPSS statistical software. This is the only book that teaches you how to use Microsoft Excel for Predictive HR Analytics, Text Mining & Organizational Network Analysis (ONA) with step-by-step print-screen instructions: 1) Predictive HR Analytics: Use Excel's Statistical Analysis tools (Decision trees, Correlation, Multiple & Logistic Regression) to run Predictive HR Analytics. E.g. an employee is predicted to have a 60% probability of getting into accidents, if he is age 25, worked 1 year in the company & took 6 days sick leave. An employee is predicted to get rated "7" for Customer Service, if the training program that he attended has a training evaluation score of "8". An employee is predicted to resign if she is age 23, worked for 2 years, and takes 60 minutes to commute to work. 2) Organizational Network Analysis (ONA): Run ONA using Excel's network analysis tool. Learn how to convert an employee's organizational network into a score & then predict if they will be a high-potential (HiPo). E.g. an employee is predicted to be a HiPo with performance rating of "9", if his "Social Network Size" is "16", "Social Network Diversity Index" is "3" & "Competency Score" is "8". 3) Text Mining, Sentiment Analysis & Word Clouds: Mine text from social network posts, employee engagement surveys & Glassdoor comments, then run Sentiment Analysis using Excel & visualize the insights with "Word Clouds". Learn how to predict a company's average employee attrition rate based on its sentiment. E.g. a company's average employee attrition rate is predicted to be 8%, if unemployment rate is 3%, GDP growth is 2%, Glassdoor public sentiment rating is "5", and engagement score is "7".
Predictive HR Analytics

Author: Dr Martin R. Edwards
language: en
Publisher: Kogan Page Publishers
Release Date: 2019-03-03
HR metrics and organizational people-related data are an invaluable source of information from which to identify trends and patterns in order to make effective business decisions. But HR practitioners often lack the statistical and analytical know-how to fully harness the potential of this data. Predictive HR Analytics provides a clear, accessible framework for understanding and working with people analytics and advanced statistical techniques. Using the statistical package SPSS (with R syntax included), it takes readers step by step through worked examples, showing them how to carry out and interpret analyses of HR data in areas such as employee engagement, performance and turnover. Readers are shown how to use the results to enable them to develop effective evidence-based HR strategies. This second edition has been updated to include the latest material on machine learning, biased algorithms, data protection and GDPR considerations, a new example using survival analyses, and up-to-the-minute screenshots and examples with SPSS version 25. It is supported by a new appendix showing main R coding, and online resources consisting of SPSS and Excel data sets and R syntax with worked case study examples.
Applied Predictive Analytics

Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.