Predictive And Simulation Analytics

Download Predictive And Simulation Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predictive And Simulation Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Predictive and Simulation Analytics

Author: Walter R. Paczkowski
language: en
Publisher: Springer Nature
Release Date: 2023-07-18
This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github. This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
Predictive and Simulation Analytics

This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github. This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
Simulating Business Processes for Descriptive, Predictive, and Prescriptive Analytics

Author: Andrew Greasley
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2019-10-21
This book outlines the benefits and limitations of simulation, what is involved in setting up a simulation capability in an organization, the steps involved in developing a simulation model and how to ensure that model results are implemented. In addition, detailed example applications are provided to show where the tool is useful and what it can offer the decision maker. In Simulating Business Processes for Descriptive, Predictive, and Prescriptive Analytics, Andrew Greasley provides an in-depth discussion of Business process simulation and how it can enable business analytics How business process simulation can provide speed, cost, dependability, quality, and flexibility metrics Industrial case studies including improving service delivery while ensuring an efficient use of staff in public sector organizations such as the police service, testing the capacity of planned production facilities in manufacturing, and ensuring on-time delivery in logistics systems State-of-the-art developments in business process simulation regarding the generation of simulation analytics using process mining and modeling people’s behavior Managers and decision makers will learn how simulation provides a faster, cheaper and less risky way of observing the future performance of a real-world system. The book will also benefit personnel already involved in simulation development by providing a business perspective on managing the process of simulation, ensuring simulation results are implemented, and that performance is improved.