Predicate Logic The Semantic Foundations Of Logic

Download Predicate Logic The Semantic Foundations Of Logic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Predicate Logic The Semantic Foundations Of Logic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Predicate Logic

Author: Richard L Epstein
language: en
Publisher: Advanced Reasoning Forum
Release Date: 2018-11-05
The forms and scope of logic rest on assumptions of how language and reasoning connect to experience. In this volume an analysis of meaning and truth provides a foundation for studying modern propositional and predicate logics. Chapters on propositional logic, parsing propositions, and meaning, truth, and reference give a basis for criteria that can be used to judge formalizations of ordinary language arguments. Over 120 worked examples of formalizations of propositions and arguments illustrate the scope and limitations of modern logic, as analyzed in chapters on identity, quantifiers, descriptive names, functions, and second-order logic. The chapter on second-order logic illustrates how different conceptions of predicates and propositions do not lead to a common basis for quantification over predicates, as they do for quantification over things. Notable for its clarity of presentation, and supplemented by many exercises, this volume is suitable for philosophers, linguists, mathematicians, and computer scientists who wish to better understand the tools they use in formalizing reasoning.
Classical Mathematical Logic

Author: Richard L. Epstein
language: en
Publisher: Princeton University Press
Release Date: 2006-07-23
In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.