Practical Time Series Forecasting With R

Download Practical Time Series Forecasting With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Time Series Forecasting With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Practical Time Series Forecasting with R

Author: Galit Shmueli
language: en
Publisher: Axelrod Schnall Publishers
Release Date: 2024-02-24
Practical Time Series Forecasting with R: A Hands-On Guide, Third Edition provides an applied approach to time-series forecasting. Forecasting is an essential component of predictive analytics. The book introduces popular forecasting methods and approaches used in a variety of business applications. The book offers clear explanations, practical examples, and end-of-chapter exercises and cases. Readers will learn to use forecasting methods using the free open-source R software to develop effective forecasting solutions that extract business value from time series data. This edition features the R fable package, full color, enhanced organization, and new material. It includes: Popular forecasting methods including smoothing algorithms, regression models, ARIMA, neural networks, deep learning, and ensembles - A practical approach to evaluating the performance of forecasting solutions - A business-analytics exposition focused on linking time-series forecasting to business goals - Guided cases for integrating the acquired knowledge using real data - End-of-chapter problems to facilitate active learning - Data, R code, and instructor materials on companion website - Affordable and globally-available textbook, available in hardcover, paperback, and Kindle formats Practical Time Series Forecasting with R: A Hands-On Guide, Third Edition is the perfect textbook for upper-undergraduate, graduate and MBA-level courses as well as professional programs in data science and business analytics. The book is also designed for practitioners in the fields of operations research, supply chain management, marketing, economics, information systems, finance, and management.
Forecasting: principles and practice

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Practical Time Series Analysis

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance