Practical Linear Algebra

Download Practical Linear Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Practical Linear Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Practical Linear Algebra

Linear algebra is growing in importance. 3D entertainment, animations in movies and video games are developed using linear algebra. Animated characters are generated using equations straight out of this book. Linear algebra is used to extract knowledge from the massive amounts of data generated from modern technology. The Fourth Edition of this popular text introduces linear algebra in a comprehensive, geometric, and algorithmic way. The authors start with the fundamentals in 2D and 3D, then move on to higher dimensions, expanding on the fundamentals and introducing new topics, which are necessary for many real-life applications and the development of abstract thought. Applications are introduced to motivate topics. The subtitle, A Geometry Toolbox, hints at the book’s geometric approach, which is supported by many sketches and figures. Furthermore, the book covers applications of triangles, polygons, conics, and curves. Examples demonstrate each topic in action. This practical approach to a linear algebra course, whether through classroom instruction or self-study, is unique to this book. New to the Fourth Edition: Ten new application sections. A new section on change of basis. This concept now appears in several places. Chapters 14-16 on higher dimensions are notably revised. A deeper look at polynomials in the gallery of spaces. Introduces the QR decomposition and its relevance to least squares. Similarity and diagonalization are given more attention, as are eigenfunctions. A longer thread on least squares, running from orthogonal projections to a solution via SVD and the pseudoinverse. More applications for PCA have been added. More examples, exercises, and more on the kernel and general linear spaces. A list of applications has been added in Appendix A. The book gives instructors the option of tailoring the course for the primary interests of their students: mathematics, engineering, science, computer graphics, and geometric modeling.
Practical Linear Algebra for Machine Learning

Machine Learning is everywhere these days and a lot of fellows desire to learn it and even master it! This burning desire creates a sense of impatience. We are looking for shortcuts and willing to ONLY jump to the main concept. If you do a simple search on the web, you see thousands of people asking "How can I learn Machine Learning?", "What is the fastest approach to learn Machine Learning?", and "What are the best resources to start Machine Learning?" \textit. Mastering a branch of science is NOT just a feel-good exercise. It has its own requirements.One of the most critical requirements for Machine Learning is Linear Algebra. Basically, the majority of Machine Learning is working with data and optimization. How can you want to learn those without Linear Algebra? How would you process and represent data without vectors and matrices? On the other hand, Linear Algebra is a branch of mathematics after all. A lot of people trying to avoid mathematics or have the temptation to "just learn as necessary." I agree with the second approach, though. \textit: You cannot escape Linear Algebra if you want to learn Machine Learning and Deep Learning. There is NO shortcut.The good news is there are numerous resources out there. In fact, the availability of numerous resources made me ponder whether writing this book was necessary? I have been blogging about Machine Learning for a while and after searching and searching I realized there is a deficiency of an organized book which \textbf teaches the most used Linear Algebra concepts in Machine Learning, \textbf provides practical notions using everyday used programming languages such as Python, and \textbf be concise and NOT unnecessarily lengthy.In this book, you get all of what you need to learn about Linear Algebra that you need to master Machine Learning and Deep Learning.
Linear Algebra and Linear Operators in Engineering

Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical sciences. Also included are several numerical applications, complete with Mathematica solutions and code, giving the student a "hands-on" introduction to numerical analysis. Linear Algebra and Linear Operators in Engineering is ideally suited as the main text of an introductory graduate course, and is a fine instrument for self-study or as a general reference for those applying mathematics. - Contains numerous Mathematica examples complete with full code and solutions - Provides complete numerical algorithms for solving linear and nonlinear problems - Spans elementary notions to the functional theory of linear integral and differential equations - Includes over 130 examples, illustrations, and exercises and over 220 problems ranging from basic concepts to challenging applications - Presents real-life applications from chemical, mechanical, and electrical engineering and the physical sciences