Power Quality Measurement And Analysis Using Higher Order Statistics


Download Power Quality Measurement And Analysis Using Higher Order Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Power Quality Measurement And Analysis Using Higher Order Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Power Quality Measurement and Analysis Using Higher-Order Statistics


Power Quality Measurement and Analysis Using Higher-Order Statistics

Author: Olivia Florencias-Oliveros

language: en

Publisher: John Wiley & Sons

Release Date: 2022-11-04


DOWNLOAD





POWER QUALITY MEASUREMENT AND ANALYSIS USING HIGHER-ORDER STATISTICS Help protect your network with this important reference work on cyber security Power quality (PQ) in electrotechnical systems refers to a set of characteristics related to the movement of energy and the delivery of voltage to consumers in the highest standard. As electricity networks change and adapt to new technologies and concepts of energy within a future Smart Grid, it has become clear that standardized methods by which stability and accuracy of electrical service along a network are currently measured are no longer enough to solve inherent issues in service and ensure established requirements are met. Power Quality Measurement and Analysis using Higher-Order Statistics reflects the latest information related to PQ (Power Quality) analysis solutions, particularly that related to the implementation of new quality indices in the domain of higher-order statistics (HOS). The authors—noted experts on the topic—carefully address the detection of PQ problems from two perspectives: the detection of specific events that occur on networks in isolation and continuous monitoring detection. In doing so, the authors demonstrate the use of HOS in current waveform models, enabling the characterization of different power circuit topologies and loads. This book thereby expertly explores the benefits of using HOS, bridging the gap between signal processing and power, and building a better understanding for readers. Power Quality Measurement and Analysis using Higher-Order Statistics readers will also find: A unique methodology for PQ analysis through its combination of HOS and PQ monitoring A proposal for new measurement solutions that can be easily implemented into modern instrumentation The detection of PQ problems from multiple perspectives The use of HOS in current waveform models, which enables the characterization of different power circuit topologies and loads Pitched at a specialized level, Power Quality Measurement and Analysis is an essential reference for researchers, academics, and industry insiders, as well as advanced students in this field.

Power Quality Measurement and Analysis Using Higher-Order Statistics


Power Quality Measurement and Analysis Using Higher-Order Statistics

Author: Olivia Florencias-Oliveros

language: en

Publisher: John Wiley & Sons

Release Date: 2022-11-21


DOWNLOAD





POWER QUALITY MEASUREMENT AND ANALYSIS USING HIGHER-ORDER STATISTICS Help protect your network with this important reference work on cyber security Power quality (PQ) in electrotechnical systems refers to a set of characteristics related to the movement of energy and the delivery of voltage to consumers in the highest standard. As electricity networks change and adapt to new technologies and concepts of energy within a future Smart Grid, it has become clear that standardized methods by which stability and accuracy of electrical service along a network are currently measured are no longer enough to solve inherent issues in service and ensure established requirements are met. Power Quality Measurement and Analysis using Higher-Order Statistics reflects the latest information related to PQ (Power Quality) analysis solutions, particularly that related to the implementation of new quality indices in the domain of higher-order statistics (HOS). The authors—noted experts on the topic—carefully address the detection of PQ problems from two perspectives: the detection of specific events that occur on networks in isolation and continuous monitoring detection. In doing so, the authors demonstrate the use of HOS in current waveform models, enabling the characterization of different power circuit topologies and loads. This book thereby expertly explores the benefits of using HOS, bridging the gap between signal processing and power, and building a better understanding for readers. Power Quality Measurement and Analysis using Higher-Order Statistics readers will also find: A unique methodology for PQ analysis through its combination of HOS and PQ monitoring A proposal for new measurement solutions that can be easily implemented into modern instrumentation The detection of PQ problems from multiple perspectives The use of HOS in current waveform models, which enables the characterization of different power circuit topologies and loads Pitched at a specialized level, Power Quality Measurement and Analysis is an essential reference for researchers, academics, and industry insiders, as well as advanced students in this field.

Analysis for Power Quality Monitoring


Analysis for Power Quality Monitoring

Author: Juan-José González de la Rosa

language: en

Publisher: MDPI

Release Date: 2020-05-22


DOWNLOAD





We are immersed in the so-called digital energy network, continuously introducing new technological advances for a better way of life. Numerous emerging words are in the spotlight, namely: Internet of Things (IoT), Big Data, Smart Cities, Smart Grid, Industry 4.0, etc. To achieve this formidable goal, systems should work more efficiently, and this fact inevitably leads to power quality (PQ) assurance. Apart from its economic losses, a bad PQ implies serious risks for machines, and consequently for people. Many researchers are endeavoring to develop new analysis techniques, instruments, measurement methods, and new indices and norms that match and fulfil the requirements regarding the current operation of the electrical network. This book offers a compilation of the some recent advances in this field. The chapters range from computing issues to technological implementations, going through event detection strategies and new indices and measurement methods that contribute significantly to the advancement of PQ analysis. Experiments have been developed within the frames of research units and projects, and deal with real data from industry and public buildings. Human beings have an unavoidable commitment with sustainability, which implies adapting PQ monitoring techniques to our dynamic world, defining a digital and smart concept of quality for electricity.