Power Electronics Converters And Their Control For Renewable Energy Applications

Download Power Electronics Converters And Their Control For Renewable Energy Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Power Electronics Converters And Their Control For Renewable Energy Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Power Electronics Converters and their Control for Renewable Energy Applications

Power Electronics Converters and their Control for Renewable Energy Applications provides information that helps to solve common challenges with power electronics converters, including loss by switching, heating of power switches, management of switching time, improvement of the quality of the signals delivered by power converters, and improvement of the quality of energy produced by renewable energy sources. This book is of interest to academics, researchers, and engineers in renewable energy, power systems, electrical engineering, electronics, and mechanical engineering. - Includes important visual illustrations and imagery of concise circuit schematics and renewable energy applications - Features a templated approach for step-by-step implementation of the new MPPT algorithm based on recent and intelligent techniques - Provides methods for optimal harnessing of energy from renewable energy sources and converter topology synthesis
Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications

Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
Modeling and Control of Power Electronic Converters for Microgrid Applications

This book covers the fundamentals of power electronic converter modeling and control, digital simulation, and experimental studies in the area of renewable energy systems and AC/DC microgrid. Recent advanced control methods for voltage source inverters (VSIs) and the hierarchical controlled islanded microgrid are discussed, including the mathematical modeling, controller synthesis, parameter selection and multi-scale stability analysis, and consensus-based control strategies for the microgrid and microgrid clusters. The book will be an invaluable technical reference for practicing engineers and researchers working in the areas of renewable energy, power electronics, energy internet, and smart grid. It can also be utilized as reference book for undergraduate and postgraduate students in electrical engineering.