Power Electronics And Control Techniques For Maximum Energy Harvesting In Photovoltaic Systems

Download Power Electronics And Control Techniques For Maximum Energy Harvesting In Photovoltaic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Power Electronics And Control Techniques For Maximum Energy Harvesting In Photovoltaic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems

Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) source. Tools to Help You Improve the Efficiency of Photovoltaic Systems The book supplies an overview of recent improvements in connecting PV systems to the grid and highlights various solutions that can be used as a starting point for further research and development. It begins with a review of methods for modeling a PV array working in uniform and mismatched conditions. The book then discusses several ways to achieve the best maximum power point tracking (MPPT) performance. A chapter focuses on MPPT efficiency, examining the design of the parameters that affect algorithm performance. The authors also address the maximization of the energy harvested in mismatched conditions, in terms of both power architecture and control algorithms, and discuss the distributed MPPT approach. The final chapter details the design of DC/DC converters, which usually perform the MPPT function, with special emphasis on their energy efficiency. Get Insights from the Experts on How to Effectively Implement MPPT Written by well-known researchers in the field of photovoltaic systems, this book tackles state-of-the-art issues related to how to extract the maximum electrical power from photovoltaic arrays under any weather condition. Featuring a wealth of examples and illustrations, it offers practical guidance for researchers and industry professionals who want to implement MPPT in photovoltaic systems.
Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems

Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) source. Tools to Help You Improve the Efficiency of Photovoltaic Systems The book supplies an overview of recent improvements in connecting PV systems to the grid and highlights various solutions that can be used as a starting point for further research and development. It begins with a review of methods for modeling a PV array working in uniform and mismatched conditions. The book then discusses several ways to achieve the best maximum power point tracking (MPPT) performance. A chapter focuses on MPPT efficiency, examining the design of the parameters that affect algorithm performance. The authors also address the maximization of the energy harvested in mismatched conditions, in terms of both power architecture and control algorithms, and discuss the distributed MPPT approach. The final chapter details the design of DC/DC converters, which usually perform the MPPT function, with special emphasis on their energy efficiency. Get Insights from the Experts on How to Effectively Implement MPPT Written by well-known researchers in the field of photovoltaic systems, this book tackles state-of-the-art issues related to how to extract the maximum electrical power from photovoltaic arrays under any weather condition. Featuring a wealth of examples and illustrations, it offers practical guidance for researchers and industry professionals who want to implement MPPT in photovoltaic systems.
Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems

"Preface Photovoltaic (PV) systems are nowadays producing a significant amount of the electrical energy used all around the world. The support the PV technology can offer in the next decades, to the rate of growth of the advanced economies as well as of the developing Countries, is very high. The incentives provided at a first stage by the European governments have resulted in the rapid growth of the photovoltaic market and in the increase of the number and quality of products offered by the industries. PV modules by many producers are nowadays commercially available and a number of power electronic systems have been put on the Market for processing the electric power produced by PV systems, especially for grid connected applications. Also the scientific literature concerning PV applications has been characterized by a strong quantitative and qualitative growth in the last decade. A huge number of papers has been written and continues to be published in many journals; moreover, high impact factor scientific journals which are specifically devoted to photovoltaic systems are printed. A significant number of scientific papers is dedicated to the control of the photovoltaic source. A simple search on the Reuters Thomson website reveals that, at the end of May 2012, about 600 papers include the Maximum Power Point Tracking among their keywords. Many authors have contributed to the scientific field of the circuits and systems ensuring the best operation of the photovoltaic generator, but a reference in this field is still lacking. Some books that try to assess the most significant improvements concerning the connection of the photovoltaic systems to the grid have been recently published"--