Post Modern Algebra


Download Post Modern Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Post Modern Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Post-Modern Algebra


Post-Modern Algebra

Author: Jonathan D. H. Smith

language: en

Publisher: John Wiley & Sons

Release Date: 2011-09-30


DOWNLOAD





Advanced algebra in the service of contemporary mathematicalresearch-- a unique introduction. This volume takes an altogether new approach to advanced algebra.Its intriguing title, inspired by the term postmodernism, denotes adeparture from van der Waerden's Modern Algebra--a book that hasdominated the field for nearly seventy years. Post-Modern Algebraoffers a truly up-to-date alternative to the standard approach,explaining topics from an applications-based perspective ratherthan by abstract principles alone. The book broadens the field ofstudy to include algebraic structures and methods used in currentand emerging mathematical research, and describes the powerful yetsubtle techniques of universal algebra and category theory.Classical algebraic areas of groups, rings, fields, and vectorspaces are bolstered by such topics as ordered sets, monoids,monoid actions, quasigroups, loops, lattices, Boolean algebras,categories, and Heyting algebras. The text features: * A clear and concise treatment at an introductory level, tested inuniversity courses. * A wealth of exercises illustrating concepts and their practicalapplication. * Effective techniques for solving research problems in the realworld. * Flexibility of presentation, making it easy to tailor material tospecific needs. * Help with elementary proofs and algebraic notations for studentsof varying abilities. Post-Modern Algebra is an excellent primary or supplementary textfor graduate-level algebra courses. It is also an extremely usefulresource for professionals and researchers in many areas who musttackle abstract, linear, or universal algebra in the course oftheir work.

Algebra: Chapter 0


Algebra: Chapter 0

Author: Paolo Aluffi

language: en

Publisher: American Mathematical Soc.

Release Date: 2009


DOWNLOAD





Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.

Advanced Modern Algebra


Advanced Modern Algebra

Author: Joseph J. Rotman

language: en

Publisher: American Mathematical Society

Release Date: 2023-02-22


DOWNLOAD





This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.