Population Dynamics Based On Individual Stochasticity


Download Population Dynamics Based On Individual Stochasticity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Population Dynamics Based On Individual Stochasticity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Population Dynamics Based on Individual Stochasticity


Population Dynamics Based on Individual Stochasticity

Author: Ryo Oizumi

language: en

Publisher: Springer Nature

Release Date: 2022-09-17


DOWNLOAD





This book demonstrates that population structure and dynamics can be reconstructed by stochastic analysis. Population projection is usually based on age-structured population models. These models consist of age-dependent fertility and mortality, whereas birth and death processes generally arise from states of individuals. For example, a number of seeds are proportional to tree size, and amount of income and savings are the basis of decision making for birth behavior in human beings. Thus, even though individuals belong to an identical cohort, they have different fertility and mortality. To treat this kind of individual heterogeneity, stochastic state transitions are reasonable rather than the deterministic states. This book extends deterministic systems to stochastic systems specifically, constructing a state transition model represented by stochastic differential equations. The diffusion process generated by stochastic differential equations provides statistics determining population dynamics, i.e., heterogeneity is incorporated in population dynamics as its statistics. Applying this perspective to demography and evolutionary biology, we can consider the role of heterogeneity in life history or evolution. These concepts are provided to readers with explanations of stochastic analysis.

Stochastic Population Dynamics in Ecology and Conservation


Stochastic Population Dynamics in Ecology and Conservation

Author: Russell Lande

language: en

Publisher:

Release Date: 2003


DOWNLOAD





All populations fluctuate stochastically, creating a risk of extinction that does not exist in deterministic models, with fundamental consequences for both pure and applied ecology. This book provides the most comprehensive introduction to stochastic population dynamics, combining classical background material with a variety of modern approaches, including new and previously unpublished results by the authors, illustrated with examples from bird and mammal populations, and insect communities.Demographic and environmental stochasticity are introduced with statistical methods for estimating them from field data. The long-run growth rate of a population is explained and extended to include age structure with both deomgraphic and environmental stochasticity. Diffusion approximations facilitate the analysis of extinction dynamics and the duration of the final decline. Methods are developed for estimating delayed density dependence from population time series using life history data. Metapopulation viability and the spatial scale of population fluctuations and extinction risk are analyzed. Stochastic dynamics and statistical uncertainty in population parameters are incorporated in Population Viability Analysis and strategies for sustainable harvesting.Statistics of species diversity measures and species abundance distributions are described, with implications for rapid assessments of biodiversity, and methods are developed for partitioning species diversity into additive components. Analysis of the stochastic dynamics of a tropical butterfly community in space and time indicates that most of the variance in the species abundance distribution is due to ecological heterogeneity among species, so that real communities are far from neutral.

The Influence of Demographic Stochasticity on Population Dynamics


The Influence of Demographic Stochasticity on Population Dynamics

Author: Tommaso Biancalani

language: en

Publisher: Springer

Release Date: 2014-06-04


DOWNLOAD





The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact subject to a great deal of noise. Relevant examples include social insects competing for resources, molecules undergoing chemical reactions in a cell and a pool of genomes subject to evolution. When the population size is small, novel macroscopic phenomena can arise, which can be analyzed using the theory of stochastic processes. This thesis is centered on two unsolved problems in population dynamics: the symmetry breaking observed in foraging populations and the robustness of spatial patterns. We argue that these problems can be resolved with the help of two novel concepts: noise-induced bistable states and stochastic patterns.