Polar Cap Boundary Phenomena


Download Polar Cap Boundary Phenomena PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Polar Cap Boundary Phenomena book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Polar Cap Boundary Phenomena


Polar Cap Boundary Phenomena

Author: Jøran Moen

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





These proceedings are based on the invited talks and selected research reports presented at the NATO Advanced Study Institute (ASI) on "POLAR CAP BOUNDARY PHENOMENA" held at Longyearbyen, Svalbard, June 4 - 13, 1997. The role of the polar cap and its boundary is very substantial in solar-terrestrial physics. At this NATO AS! a major change in thinking on the "cusp" precipitation region in the high-latitude days ide upper atmosphere was reflected, at least for intervals when the interplanetary magnetic field (IMF) is directed southward. It is likely that this has implications for northward IMF as well. The change comes from the now almost complete acceptance of the concept of magnetosheath particle entry along open magnetic field lines and the evolution of the precipitation into the upper atmosphere with time elapsed since magnetic reconnection which opened the field line. A key prediction of this view is that the low-latitude boundary layer (LLBL) is on open field lines.

Dayside and Polar Cap Aurora


Dayside and Polar Cap Aurora

Author: Per Even Sandholt

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-05-02


DOWNLOAD





The auroral emissions in the upper atmosphere of the polar regions of the Earth are evidence of the capture of energetic particles from the Sun, streaming by the Earth as the solar wind. These auroral emissions, then, are a window to outer space, and can provide us with valuable information about electrodynamic coupling processes between the solar wind and the Earth's ionosphere and upper atmosphere. Studying the physics of these phenomena extends our understanding of our plasma universe. Ground-based remote-sensing techniques, able to monitor continuously the variations in the signatures of aurorae, in combination with in-situ satellite and rocket measurements, promise to advance dramatically our understanding of the physical processes taking place at the interface of the atmospheres of the Earth and the Sun. Decoding their complexity brings us closer to reliable prediction of communication environments, especially at high latitudes. This understanding, in turn, will help us resolve problems of communication and navigation across polar regions.

The Magnetospheric Cusps: Structure and Dynamics


The Magnetospheric Cusps: Structure and Dynamics

Author: Theodore A. Fritz

language: en

Publisher: Springer Science & Business Media

Release Date: 2006-02-23


DOWNLOAD





This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere and it appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. Audience: This book will be of interest to space science research organizations in governments and industries, the community of Space Physics scientists and university departments of physics, astronomy, space physics, and geophysics.