Point Estimation Of Root Finding Methods


Download Point Estimation Of Root Finding Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Point Estimation Of Root Finding Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Point Estimation of Root Finding Methods


Point Estimation of Root Finding Methods

Author: Miodrag Petkovic

language: en

Publisher: Springer

Release Date: 2008-05-29


DOWNLOAD





The problem of solving nonlinear equations and systems of equations ranks among the most signi?cant in the theory and practice, not only of applied mathematicsbutalsoofmanybranchesofengineeringsciences,physics,c- puter science, astronomy, ?nance, and so on. A glance at the bibliography and the list of great mathematicians who have worked on this topic points to a high level of contemporary interest. Although the rapid development of digital computers led to the e?ective implementation of many numerical methods, in practical realization, it is necessary to solve various problems such as computational e?ciency based on the total central processor unit time, the construction of iterative methods which possess a fast convergence in the presence of multiplicity (or clusters) of a desired solution, the control of rounding errors, information about error bounds of obtained approximate solution, stating computationally veri?able initial conditions that ensure a safe convergence, etc. It is the solution of these challenging problems that was the principal motivation for the present study. In this book, we are mainly concerned with the statement and study of initial conditions that provide the guaranteed convergence of an iterative method for solving equations of the form f(z) = 0. The traditional approach to this problem is mainly based on asymptotic convergence analysis using some strong hypotheses on di?erentiability and derivative bounds in a rather wide domain.

Point Estimation of Root Finding Methods


Point Estimation of Root Finding Methods

Author: Miodrag Petkovic

language: en

Publisher: Springer Science & Business Media

Release Date: 2008-05-29


DOWNLOAD





This book sets out to state computationally verifiable initial conditions for predicting the immediate appearance of the guaranteed and fast convergence of iterative root finding methods. Attention is paid to iterative methods for simultaneous determination of polynomial zeros in the spirit of Smale's point estimation theory, introduced in 1986. Some basic concepts and Smale's theory for Newton's method, together with its modifications and higher-order methods, are presented in the first two chapters. The remaining chapters contain the recent author's results on initial conditions guaranteing convergence of a wide class of iterative methods for solving algebraic equations. These conditions are of practical interest since they depend only on available data, the information of a function whose zeros are sought and initial approximations. The convergence approach presented can be applied in designing a package for the simultaneous approximation of polynomial zeros.

Multipoint Methods for Solving Nonlinear Equations


Multipoint Methods for Solving Nonlinear Equations

Author: Miodrag Petkovic

language: en

Publisher: Academic Press

Release Date: 2012-12-31


DOWNLOAD





This book is the first on the topic and explains the most cutting-edge methods needed for precise calculations and explores the development of powerful algorithms to solve research problems. Multipoint methods have an extensive range of practical applications significant in research areas such as signal processing, analysis of convergence rate, fluid mechanics, solid state physics, and many others. The book takes an introductory approach in making qualitative comparisons of different multipoint methods from various viewpoints to help the reader understand applications of more complex methods. Evaluations are made to determine and predict efficiency and accuracy of presented models useful to wide a range of research areas along with many numerical examples for a deep understanding of the usefulness of each method. This book will make it possible for the researchers to tackle difficult problems and deepen their understanding of problem solving using numerical methods. Multipoint methods are of great practical importance, as they determine sequences of successive approximations for evaluative purposes. This is especially helpful in achieving the highest computational efficiency. The rapid development of digital computers and advanced computer arithmetic have provided a need for new methods useful to solving practical problems in a multitude of disciplines such as applied mathematics, computer science, engineering, physics, financial mathematics, and biology. - Provides a succinct way of implementing a wide range of useful and important numerical algorithms for solving research problems - Illustrates how numerical methods can be used to study problems which have applications in engineering and sciences, including signal processing, and control theory, and financial computation - Facilitates a deeper insight into the development of methods, numerical analysis of convergence rate, and very detailed analysis of computational efficiency - Provides a powerful means of learning by systematic experimentation with some of the many fascinating problems in science - Includes highly efficient algorithms convenient for the implementation into the most common computer algebra systems such as Mathematica, MatLab, and Maple


Recent Search