Plasmonic Resonators

Download Plasmonic Resonators PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Plasmonic Resonators book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Plasmonic Resonators

Plasmonic resonators, composed of metallic micro- and nanostructures, belong to the category of excited-state physics on resonances from gigahertz to petahertz. Dynamical physics is in contrast to ground-state physics, which includes thermal states, and is connected to diverse applications to enhance existing photo-induced effects and phenomena such as plasmon-enhanced photoluminescence and Raman scattering. This book has three main aims: to provide fundamental knowledge on plasmonic resonators, to explain diverse plasmonic resonators, and to stimulate further development in plasmonic resonators. Plasmon-related studies, which are sometimes called plasmonics and include a substantial portion of metamaterials, have shown significant development since the 1980s. The piled-up results are too numerous to study from the beginning, but this book summarizes those results, including the history (past), all the possible types of plasmonic resonators (present), and their wide range of applications (future). It provides the basics of plasmons and resonant physics for undergraduate students, the systematic knowledge on plasmonic resonators for graduate students, and cutting-edge and in-depth information on plasmon-enhancement studies for researchers who are not experts in plasmonics and metamaterials, thereby benefitting a wide range of readers who are interested in the nanotechnology involving metallic nanostructures.
Plasmonic Resonators

Plasmonic resonators, composed of metallic micro- and nanostructures, belong to the category of excited-state physics on resonances from gigahertz to petahertz. Dynamical physics is in contrast to ground-state physics, which includes thermal states, and is connected to diverse applications to enhance existing photo-induced effects and phenomena such as plasmon-enhanced photoluminescence and Raman scattering. This book has three main aims: to provide fundamental knowledge on plasmonic resonators, to explain diverse plasmonic resonators, and to stimulate further development in plasmonic resonators. Plasmon-related studies, which are sometimes called plasmonics and include a substantial portion of metamaterials, have shown significant development since the 1980s. The piled-up results are too numerous to study from the beginning, but this book summarizes those results, including the history (past), all the possible types of plasmonic resonators (present), and their wide range of applications (future). It provides the basics of plasmons and resonant physics for undergraduate students, the systematic knowledge on plasmonic resonators for graduate students, and cutting-edge and in-depth information on plasmon-enhancement studies for researchers who are not experts in plasmonics and metamaterials, thereby benefitting a wide range of readers who are interested in the nanotechnology involving metallic nanostructures.
Plasmonic Materials and Metastructures

Plasmonic Materials and Metastructures: Fundamentals, Current Status, and Perspectives reviews the current status and emerging trends in the development of conventional and alternative plasmonic materials. Sections cover fundamentals and emerging trends of plasmonic materials development, including synthesis strategies (chemical and physical) and optical characterization techniques. Next, the book addresses fundamentals, properties, remaining barriers for commercial translation, and the latest advances and opportunities for conventional noble metal plasmonic materials. Fundamentals and advances for alternative plasmonic materials are also reviewed, including two-dimensional hybrid materials composed of graphene, monolayer transition metal dichalcogenides, boron nitride, etc. In addition, other sections cover applications of plasmonic metastructures enabled by plasmonic materials with improved material properties and newly discovered functionalities. Applications reviewed include quantum plasmonics, topological plasmonics, chiral plasmonics, nanolasers, imaging (metalens), active, and integrated technologies. - Provides an overview of materials properties, characterization and fabrication techniques for plasmonic metastructured materials - Includes key concepts and advances for a wide range of metastructured materials, including metamaterials, metasurfaces and epsilon-near-zero plasmonic metastructures - Discusses emerging applications and barriers to commercial translation for quantum plasmonics, topological plasmonics, nanolasers, imaging and integrated technologies