Pivot To Python

Download Pivot To Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Pivot To Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Pivot to Python

This book is aimed at people who know something about programming. The idea is provide a quick read with a lot of examples. It will get professionals started in a repeatable, robust way. They will, of course, have questions around some details of the presentation, applying some of their experiences with other, shabby programming languages to Python. This book will be usable by someone who has a technical background, and is interested in exploring programming and Python.
Python Data Science Handbook

Author: Jake VanderPlas
language: en
Publisher: "O'Reilly Media, Inc."
Release Date: 2016-11-21
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Mastering Python

Author: Rick van Hattem
language: en
Publisher: Packt Publishing Ltd
Release Date: 2022-05-20
Use advanced features of Python to write high-quality, readable code and packages Key Features Extensively updated for Python 3.10 with new chapters on design patterns, scientific programming, machine learning, and interactive Python Shape your scripts using key concepts like concurrency, performance optimization, asyncio, and multiprocessing Learn how advanced Python features fit together to produce maintainable code Book Description Even if you find writing Python code easy, writing code that is efficient, maintainable, and reusable is not so straightforward. Many of Python's capabilities are underutilized even by more experienced programmers. Mastering Python, Second Edition, is an authoritative guide to understanding advanced Python programming so you can write the highest quality code. This new edition has been extensively revised and updated with exercises, four new chapters and updates up to Python 3.10. Revisit important basics, including Pythonic style and syntax and functional programming. Avoid common mistakes made by programmers of all experience levels. Make smart decisions about the best testing and debugging tools to use, optimize your code's performance across multiple machines and Python versions, and deploy often-forgotten Python features to your advantage. Get fully up to speed with asyncio and stretch the language even further by accessing C functions with simple Python calls. Finally, turn your new-and-improved code into packages and share them with the wider Python community. If you are a Python programmer wanting to improve your code quality and readability, this Python book will make you confident in writing high-quality scripts and taking on bigger challenges What you will learn Write beautiful Pythonic code and avoid common Python coding mistakes Apply the power of decorators, generators, coroutines, and metaclasses Use different testing systems like pytest, unittest, and doctest Track and optimize application performance for both memory and CPU usage Debug your applications with PDB, Werkzeug, and faulthandler Improve your performance through asyncio, multiprocessing, and distributed computing Explore popular libraries like Dask, NumPy, SciPy, pandas, TensorFlow, and scikit-learn Extend Python's capabilities with C/C++ libraries and system calls Who this book is for This book will benefit more experienced Python programmers who wish to upskill, serving as a reference for best practices and some of the more intricate Python techniques. Even if you have been using Python for years, chances are that you haven't yet encountered every topic discussed in this book. A good understanding of Python programming is necessary