Physics Of Transitional Shear Flows

Download Physics Of Transitional Shear Flows PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Physics Of Transitional Shear Flows book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Physics of Transitional Shear Flows

Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at late stages of transition. These include secondary instabilities and nonlinear features of boundary-layer perturbations that lead to the final breakdown to turbulence. Thus, the reader is provided with a step-by-step approach that covers the milestones and recent advances in the laminar-turbulent transition. Special aspects of instability and transition are discussed through the book and are intended for research scientists, while the main target of the book is the student in the fundamentals of fluid mechanics. Computational guides, recommended exercises, and PowerPoint multimedia notes based on results of real scientific experiments supplement the monograph. These are especially helpful for the neophyte to obtain a solid foundation in hydrodynamic stability. To access the supplementary material go to extras.springer.com and type in the ISBN for this volume.
Stability and Transition in Shear Flows

Author: Peter J. Schmid
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The field of hydrodynamic stability has a long history, going back to Rey nolds and Lord Rayleigh in the late 19th century. Because of its central role in many research efforts involving fluid flow, stability theory has grown into a mature discipline, firmly based on a large body of knowledge and a vast body of literature. The sheer size of this field has made it difficult for young researchers to access this exciting area of fluid dynamics. For this reason, writing a book on the subject of hydrodynamic stability theory and transition is a daunting endeavor, especially as any book on stability theory will have to follow into the footsteps of the classical treatises by Lin (1955), Betchov & Criminale (1967), Joseph (1971), and Drazin & Reid (1981). Each of these books has marked an important development in stability theory and has laid the foundation for many researchers to advance our understanding of stability and transition in shear flows.
Intermittency in Transitional Shear Flows

This book contains original peer-reviewed articles written by some of the most prominent international physicists active in the field of hydrodynamics. The topic is entirely devoted to the study of the transitional regimes of incompressible viscous flow found at the onset of turbulent flows. Nine articles written for this 2020 Special Issue of the journal Entropy (MDPI) have been gathered at the crossroads of fluid mechanics, statistical physics, complexity theory, and applied mathematics. They include experimental, analytic, and computational material of an academic level that has not been published anywhere else.