Physics Of Data Science And Machine Learning

Download Physics Of Data Science And Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Physics Of Data Science And Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Physics of Data Science and Machine Learning

Physics of Data Science and Machine Learning links fundamental concepts of physics to data science, machine learning, and artificial intelligence for physicists looking to integrate these techniques into their work. This book is written explicitly for physicists, marrying quantum and statistical mechanics with modern data mining, data science, and machine learning. It also explains how to integrate these techniques into the design of experiments, while exploring neural networks and machine learning, building on fundamental concepts of statistical and quantum mechanics. This book is a self-learning tool for physicists looking to learn how to utilize data science and machine learning in their research. It will also be of interest to computer scientists and applied mathematicians, alongside graduate students looking to understand the basic concepts and foundations of data science, machine learning, and artificial intelligence. Although specifically written for physicists, it will also help provide non-physicists with an opportunity to understand the fundamental concepts from a physics perspective to aid in the development of new and innovative machine learning and artificial intelligence tools. Key Features: Introduces the design of experiments and digital twin concepts in simple lay terms for physicists to understand, adopt, and adapt. Free from endless derivations; instead, equations are presented and it is explained strategically why it is imperative to use them and how they will help in the task at hand. Illustrations and simple explanations help readers visualize and absorb the difficult-to-understand concepts. Ijaz A. Rauf is an adjunct professor at the School of Graduate Studies, York University, Toronto, Canada. He is also an associate researcher at Ryerson University, Toronto, Canada and president of the Eminent-Tech Corporation, Bradford, ON, Canada.
Deep Learning and Physics

What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
The Statistical Physics of Data Assimilation and Machine Learning

Author: Henry D. I. Abarbanel
language: en
Publisher: Cambridge University Press
Release Date: 2022-02-17
The theory of data assimilation and machine learning is introduced in an accessible manner for undergraduate and graduate students.