Physics For Philosophers An Introduction

Download Physics For Philosophers An Introduction PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Physics For Philosophers An Introduction book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Philosophy of Time

As a growing area of research, the philosophy of time is increasingly relevant to different areas of philosophy and even other disciplines. This book describes and evaluates the most important debates in philosophy of time, under several subject areas: metaphysics, epistemology, physics, philosophy of language, philosophy of mind, cognitive science, rationality, and art. Questions this book investigates include the following. Can we know what time really is? Is time possible, especially given modern physics? Must there be time because we cannot think without it? What do we experience of time? How might philosophy of time be relevant to understanding the mind–body relationship or evidence in cognitive science? Can the philosophy of time help us understand biases toward the future and the fear of death? How is time relevant to art—and is art relevant to philosophical debates about time? Finally, what exactly could time travel be? And could time travel satisfy emotions such as nostalgia and regret? Through asking such questions, and showing how they might be best answered, the book demonstrates the importance philosophy of time has in contemporary thought. Each of the book’s ten chapters begins with a helpful introduction and ends with study questions and an annotated list of further reading. This and a comprehensive bibliography at the end of the book prepare the reader to go further in their study of the philosophy of time.
Everywhere and Everywhen

Author: Nick Huggett
language: en
Publisher: Oxford University Press
Release Date: 2010-02-03
Why does time pass and space does not? Are there just three dimensions? What is a quantum particle? Nick Huggett shows that philosophy -- armed with a power to analyze fundamental concepts and their relationship to the human experience -- has much to say about these profound questions about the universe. In Everywhere and Everywhen, Huggett charts a journey that peers into some of the oldest questions about the world, through some of the newest, such as: What shape is space? Does it have an edge? What is the difference between past and future? What is time in relativity? Is time travel possible? Are there other universes? Huggett shows that answers to these profound questions are not just reserved for physics, and that philosophy can not only address but help advance our view of our deepest questions about the universe, space, and time, and their implications for humanity. His lively, accessible introduction to these topics is suitable for a general reader with no previous exposure to these profound and exciting questions.
Philosophy of Physics

Author: Tim Maudlin
language: en
Publisher: Princeton University Press
Release Date: 2019-03-19
A sophisticated and original introduction to the philosophy of quantum mechanics from one of the world’s leading philosophers of physics In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic particle theory of deBroglie and Bohm; and the conceptually challenging Many Worlds theory of Everett. Each offers a radically different proposal for the nature of physical reality, but Maudlin shows that none of them are what they are generally taken to be.